深度学习 Day26——J5DenseNet+SE-Net实战

文章目录

  • 前言
  • [1 我的环境](#1 我的环境)
  • [2 pytorch实现DenseNet算法](#2 pytorch实现DenseNet算法)
    • [2.1 前期准备](#2.1 前期准备)
      • [2.1.1 引入库](#2.1.1 引入库)
      • [2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)](#2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU))
      • [2.1.3 导入数据](#2.1.3 导入数据)
      • [2.1.4 可视化数据](#2.1.4 可视化数据)
      • [2.1.4 图像数据变换](#2.1.4 图像数据变换)
      • [2.1.4 划分数据集](#2.1.4 划分数据集)
      • [2.1.4 加载数据](#2.1.4 加载数据)
      • [2.1.4 查看数据](#2.1.4 查看数据)
    • [2.2 搭建DenseNet_SE模型](#2.2 搭建DenseNet_SE模型)
    • [2.3 训练模型](#2.3 训练模型)
      • [2.3.1 设置超参数](#2.3.1 设置超参数)
      • [2.3.2 编写训练函数](#2.3.2 编写训练函数)
      • [2.3.3 编写测试函数](#2.3.3 编写测试函数)
      • [2.3.4 正式训练](#2.3.4 正式训练)
    • [2.4 结果可视化](#2.4 结果可视化)
    • [2.4 指定图片进行预测](#2.4 指定图片进行预测)
    • [2.6 模型评估](#2.6 模型评估)
  • [3 tensorflow实现DenseNet算法](#3 tensorflow实现DenseNet算法)
  • [4 知识点详解](#4 知识点详解)
    • [4.1 SE-Net算法详解](#4.1 SE-Net算法详解)
  • [4 总结](#4 总结)

前言

关键字: pytorch实现DenseNet_SE算法,tensorflow实现DenseNet_SE算法,SE_Net算法详解

1 我的环境

  • 电脑系统:Windows 11
  • 语言环境:python 3.8.6
  • 编译器:pycharm2020.2.3
  • 深度学习环境:
    torch == 1.9.1+cu111
    torchvision == 0.10.1+cu111
    TensorFlow 2.10.1
  • 显卡:NVIDIA GeForce RTX 4070

2 pytorch实现DenseNet算法

2.1 前期准备

2.1.1 引入库

python 复制代码
import torch
import torch.nn as nn
import time
import copy
from torchvision import transforms, datasets
from pathlib import Path
from PIL import Image
import torchsummary as summary
import torch.nn.functional as F
from collections import OrderedDict
import re
import torch.utils.model_zoo as model_zoo
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
import warnings

warnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)

python 复制代码
"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPU
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 print("Using {} device".format(device))

输出

Using cuda device

2.1.3 导入数据

python 复制代码
'''前期工作-导入数据'''
data_dir = r"D:\DeepLearning\data\monkeypox_recognition"
data_dir = Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
print(classeNames)

输出

['Monkeypox', 'Others']

2.1.4 可视化数据

python 复制代码
'''前期工作-可视化数据'''
subfolder = Path(data_dir) / "Monkeypox"
image_files = list(p.resolve() for p in subfolder.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])
plt.figure(figsize=(10, 6))
for i in range(len(image_files[:12])):
    image_file = image_files[i]
    ax = plt.subplot(3, 4, i + 1)
    img = Image.open(str(image_file))
    plt.imshow(img)
    plt.axis("off")
# 显示图片
plt.tight_layout()
plt.show()

2.1.4 图像数据变换

python 复制代码
'''前期工作-图像数据变换'''
total_datadir = data_dir

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)

输出

Dataset ImageFolder
    Number of datapoints: 2142
    Root location: D:\DeepLearning\data\monkeypox_recognition
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
{'Monkeypox': 0, 'Others': 1}

2.1.4 划分数据集

python 复制代码
'''前期工作-划分数据集'''
train_size = int(0.8 * len(total_data))  # train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
test_size = len(total_data) - train_size  # test_size表示测试集大小,是总体数据长度减去训练集大小。
# 使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,
# 并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_dataset={}\ntest_dataset={}".format(train_dataset, test_dataset))
print("train_size={}\ntest_size={}".format(train_size, test_size))

输出

train_dataset=<torch.utils.data.dataset.Subset object at 0x000002A96E08E0D0>
test_dataset=<torch.utils.data.dataset.Subset object at 0x000002A96E04E640>
train_size=1713
test_size=429

2.1.4 加载数据

python 复制代码
'''前期工作-加载数据'''
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

2.1.4 查看数据

python 复制代码
'''前期工作-查看数据'''
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.2 搭建DenseNet_SE模型

python 复制代码
"""构建DenseNet_SE网络"""
# 这里我们采用了Pytorch的框架来实现DenseNet,
# 首先实现DenseBlock中的内部结构,这里是BN+ReLU+1×1Conv+BN+ReLU+3×3Conv结构,最后也加入dropout层用于训练过程。
class _DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """

    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate,
                                           kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)


# 实现DenseBlock模块,内部是密集连接方式(输入特征数线性增长):
class _DenseBlock(nn.Sequential):
    """DenseBlock """

    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(
                num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module('denselayer%d' % (i + 1), layer)


# 实现Transition层,它主要是一个卷积层和一个池化层:
class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))

# SE模块实现
class Squeeze_excitation_layer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(Squeeze_excitation_layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

# 最后我们实现DenseNet_SE网络:
class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 3 or 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
            (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
    """

    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
                 num_init_features=24, bn_size=4, compression=0.5, drop_rate=0,
                 num_classes=1000):
        super(DenseNet, self).__init__()

        # First Conv2d
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
        ]))


        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features += num_layers * growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_input_features=num_features,
                                         num_output_features=int(num_features * compression))
                self.features.add_module('transition%d' % (i + 1), transition)
                num_features = int(num_features * compression)

        # SE_layer
        self.features.add_module('SE-module', Squeeze_excitation_layer(num_features))

        # Final bn+relu
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))
        self.features.add_module('relu5', nn.ReLU(inplace=True))

        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)

        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out



model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth'}


def densenet121(pretrained=False, **kwargs):
    """DenseNet121"""
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),	**kwargs)
    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

"""搭建densenet121模型"""
# model = densenet121().to(device)  
model = densenet121(True).to(device)  # 使用预训练模型
print(model)
print(summary.summary(model, (3, 224, 224)))  # 查看模型的参数量以及相关指标
    

该模型相比DenseNet的区别是,在最后一个denseblock后增加SE_layer。

python 复制代码
# SE_layer
self.features.add_module('SE-module', Squeeze_excitation_layer(num_features))

输出

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
       BatchNorm2d-5           [-1, 64, 56, 56]             128
              ReLU-6           [-1, 64, 56, 56]               0
            Conv2d-7          [-1, 128, 56, 56]           8,192
       BatchNorm2d-8          [-1, 128, 56, 56]             256
              ReLU-9          [-1, 128, 56, 56]               0
           Conv2d-10           [-1, 32, 56, 56]          36,864
      BatchNorm2d-11           [-1, 96, 56, 56]             192
             ReLU-12           [-1, 96, 56, 56]               0
           Conv2d-13          [-1, 128, 56, 56]          12,288
      BatchNorm2d-14          [-1, 128, 56, 56]             256
             ReLU-15          [-1, 128, 56, 56]               0
           Conv2d-16           [-1, 32, 56, 56]          36,864
      BatchNorm2d-17          [-1, 128, 56, 56]             256
             ReLU-18          [-1, 128, 56, 56]               0
           Conv2d-19          [-1, 128, 56, 56]          16,384
      BatchNorm2d-20          [-1, 128, 56, 56]             256
             ReLU-21          [-1, 128, 56, 56]               0
           Conv2d-22           [-1, 32, 56, 56]          36,864
      BatchNorm2d-23          [-1, 160, 56, 56]             320
             ReLU-24          [-1, 160, 56, 56]               0
           Conv2d-25          [-1, 128, 56, 56]          20,480
      BatchNorm2d-26          [-1, 128, 56, 56]             256
             ReLU-27          [-1, 128, 56, 56]               0
           Conv2d-28           [-1, 32, 56, 56]          36,864
      BatchNorm2d-29          [-1, 192, 56, 56]             384
             ReLU-30          [-1, 192, 56, 56]               0
           Conv2d-31          [-1, 128, 56, 56]          24,576
      BatchNorm2d-32          [-1, 128, 56, 56]             256
             ReLU-33          [-1, 128, 56, 56]               0
           Conv2d-34           [-1, 32, 56, 56]          36,864
      BatchNorm2d-35          [-1, 224, 56, 56]             448
             ReLU-36          [-1, 224, 56, 56]               0
           Conv2d-37          [-1, 128, 56, 56]          28,672
      BatchNorm2d-38          [-1, 128, 56, 56]             256
             ReLU-39          [-1, 128, 56, 56]               0
           Conv2d-40           [-1, 32, 56, 56]          36,864
      BatchNorm2d-41          [-1, 256, 56, 56]             512
             ReLU-42          [-1, 256, 56, 56]               0
           Conv2d-43          [-1, 128, 56, 56]          32,768
        AvgPool2d-44          [-1, 128, 28, 28]               0
      BatchNorm2d-45          [-1, 128, 28, 28]             256
             ReLU-46          [-1, 128, 28, 28]               0
           Conv2d-47          [-1, 128, 28, 28]          16,384
      BatchNorm2d-48          [-1, 128, 28, 28]             256
             ReLU-49          [-1, 128, 28, 28]               0
           Conv2d-50           [-1, 32, 28, 28]          36,864
      BatchNorm2d-51          [-1, 160, 28, 28]             320
             ReLU-52          [-1, 160, 28, 28]               0
           Conv2d-53          [-1, 128, 28, 28]          20,480
      BatchNorm2d-54          [-1, 128, 28, 28]             256
             ReLU-55          [-1, 128, 28, 28]               0
           Conv2d-56           [-1, 32, 28, 28]          36,864
      BatchNorm2d-57          [-1, 192, 28, 28]             384
             ReLU-58          [-1, 192, 28, 28]               0
           Conv2d-59          [-1, 128, 28, 28]          24,576
      BatchNorm2d-60          [-1, 128, 28, 28]             256
             ReLU-61          [-1, 128, 28, 28]               0
           Conv2d-62           [-1, 32, 28, 28]          36,864
      BatchNorm2d-63          [-1, 224, 28, 28]             448
             ReLU-64          [-1, 224, 28, 28]               0
           Conv2d-65          [-1, 128, 28, 28]          28,672
      BatchNorm2d-66          [-1, 128, 28, 28]             256
             ReLU-67          [-1, 128, 28, 28]               0
           Conv2d-68           [-1, 32, 28, 28]          36,864
      BatchNorm2d-69          [-1, 256, 28, 28]             512
             ReLU-70          [-1, 256, 28, 28]               0
           Conv2d-71          [-1, 128, 28, 28]          32,768
      BatchNorm2d-72          [-1, 128, 28, 28]             256
             ReLU-73          [-1, 128, 28, 28]               0
           Conv2d-74           [-1, 32, 28, 28]          36,864
      BatchNorm2d-75          [-1, 288, 28, 28]             576
             ReLU-76          [-1, 288, 28, 28]               0
           Conv2d-77          [-1, 128, 28, 28]          36,864
      BatchNorm2d-78          [-1, 128, 28, 28]             256
             ReLU-79          [-1, 128, 28, 28]               0
           Conv2d-80           [-1, 32, 28, 28]          36,864
      BatchNorm2d-81          [-1, 320, 28, 28]             640
             ReLU-82          [-1, 320, 28, 28]               0
           Conv2d-83          [-1, 128, 28, 28]          40,960
      BatchNorm2d-84          [-1, 128, 28, 28]             256
             ReLU-85          [-1, 128, 28, 28]               0
           Conv2d-86           [-1, 32, 28, 28]          36,864
      BatchNorm2d-87          [-1, 352, 28, 28]             704
             ReLU-88          [-1, 352, 28, 28]               0
           Conv2d-89          [-1, 128, 28, 28]          45,056
      BatchNorm2d-90          [-1, 128, 28, 28]             256
             ReLU-91          [-1, 128, 28, 28]               0
           Conv2d-92           [-1, 32, 28, 28]          36,864
      BatchNorm2d-93          [-1, 384, 28, 28]             768
             ReLU-94          [-1, 384, 28, 28]               0
           Conv2d-95          [-1, 128, 28, 28]          49,152
      BatchNorm2d-96          [-1, 128, 28, 28]             256
             ReLU-97          [-1, 128, 28, 28]               0
           Conv2d-98           [-1, 32, 28, 28]          36,864
      BatchNorm2d-99          [-1, 416, 28, 28]             832
            ReLU-100          [-1, 416, 28, 28]               0
          Conv2d-101          [-1, 128, 28, 28]          53,248
     BatchNorm2d-102          [-1, 128, 28, 28]             256
            ReLU-103          [-1, 128, 28, 28]               0
          Conv2d-104           [-1, 32, 28, 28]          36,864
     BatchNorm2d-105          [-1, 448, 28, 28]             896
            ReLU-106          [-1, 448, 28, 28]               0
          Conv2d-107          [-1, 128, 28, 28]          57,344
     BatchNorm2d-108          [-1, 128, 28, 28]             256
            ReLU-109          [-1, 128, 28, 28]               0
          Conv2d-110           [-1, 32, 28, 28]          36,864
     BatchNorm2d-111          [-1, 480, 28, 28]             960
            ReLU-112          [-1, 480, 28, 28]               0
          Conv2d-113          [-1, 128, 28, 28]          61,440
     BatchNorm2d-114          [-1, 128, 28, 28]             256
            ReLU-115          [-1, 128, 28, 28]               0
          Conv2d-116           [-1, 32, 28, 28]          36,864
     BatchNorm2d-117          [-1, 512, 28, 28]           1,024
            ReLU-118          [-1, 512, 28, 28]               0
          Conv2d-119          [-1, 256, 28, 28]         131,072
       AvgPool2d-120          [-1, 256, 14, 14]               0
     BatchNorm2d-121          [-1, 256, 14, 14]             512
            ReLU-122          [-1, 256, 14, 14]               0
          Conv2d-123          [-1, 128, 14, 14]          32,768
     BatchNorm2d-124          [-1, 128, 14, 14]             256
            ReLU-125          [-1, 128, 14, 14]               0
          Conv2d-126           [-1, 32, 14, 14]          36,864
     BatchNorm2d-127          [-1, 288, 14, 14]             576
            ReLU-128          [-1, 288, 14, 14]               0
          Conv2d-129          [-1, 128, 14, 14]          36,864
     BatchNorm2d-130          [-1, 128, 14, 14]             256
            ReLU-131          [-1, 128, 14, 14]               0
          Conv2d-132           [-1, 32, 14, 14]          36,864
     BatchNorm2d-133          [-1, 320, 14, 14]             640
            ReLU-134          [-1, 320, 14, 14]               0
          Conv2d-135          [-1, 128, 14, 14]          40,960
     BatchNorm2d-136          [-1, 128, 14, 14]             256
            ReLU-137          [-1, 128, 14, 14]               0
          Conv2d-138           [-1, 32, 14, 14]          36,864
     BatchNorm2d-139          [-1, 352, 14, 14]             704
            ReLU-140          [-1, 352, 14, 14]               0
          Conv2d-141          [-1, 128, 14, 14]          45,056
     BatchNorm2d-142          [-1, 128, 14, 14]             256
            ReLU-143          [-1, 128, 14, 14]               0
          Conv2d-144           [-1, 32, 14, 14]          36,864
     BatchNorm2d-145          [-1, 384, 14, 14]             768
            ReLU-146          [-1, 384, 14, 14]               0
          Conv2d-147          [-1, 128, 14, 14]          49,152
     BatchNorm2d-148          [-1, 128, 14, 14]             256
            ReLU-149          [-1, 128, 14, 14]               0
          Conv2d-150           [-1, 32, 14, 14]          36,864
     BatchNorm2d-151          [-1, 416, 14, 14]             832
            ReLU-152          [-1, 416, 14, 14]               0
          Conv2d-153          [-1, 128, 14, 14]          53,248
     BatchNorm2d-154          [-1, 128, 14, 14]             256
            ReLU-155          [-1, 128, 14, 14]               0
          Conv2d-156           [-1, 32, 14, 14]          36,864
     BatchNorm2d-157          [-1, 448, 14, 14]             896
            ReLU-158          [-1, 448, 14, 14]               0
          Conv2d-159          [-1, 128, 14, 14]          57,344
     BatchNorm2d-160          [-1, 128, 14, 14]             256
            ReLU-161          [-1, 128, 14, 14]               0
          Conv2d-162           [-1, 32, 14, 14]          36,864
     BatchNorm2d-163          [-1, 480, 14, 14]             960
            ReLU-164          [-1, 480, 14, 14]               0
          Conv2d-165          [-1, 128, 14, 14]          61,440
     BatchNorm2d-166          [-1, 128, 14, 14]             256
            ReLU-167          [-1, 128, 14, 14]               0
          Conv2d-168           [-1, 32, 14, 14]          36,864
     BatchNorm2d-169          [-1, 512, 14, 14]           1,024
            ReLU-170          [-1, 512, 14, 14]               0
          Conv2d-171          [-1, 128, 14, 14]          65,536
     BatchNorm2d-172          [-1, 128, 14, 14]             256
            ReLU-173          [-1, 128, 14, 14]               0
          Conv2d-174           [-1, 32, 14, 14]          36,864
     BatchNorm2d-175          [-1, 544, 14, 14]           1,088
            ReLU-176          [-1, 544, 14, 14]               0
          Conv2d-177          [-1, 128, 14, 14]          69,632
     BatchNorm2d-178          [-1, 128, 14, 14]             256
            ReLU-179          [-1, 128, 14, 14]               0
          Conv2d-180           [-1, 32, 14, 14]          36,864
     BatchNorm2d-181          [-1, 576, 14, 14]           1,152
            ReLU-182          [-1, 576, 14, 14]               0
          Conv2d-183          [-1, 128, 14, 14]          73,728
     BatchNorm2d-184          [-1, 128, 14, 14]             256
            ReLU-185          [-1, 128, 14, 14]               0
          Conv2d-186           [-1, 32, 14, 14]          36,864
     BatchNorm2d-187          [-1, 608, 14, 14]           1,216
            ReLU-188          [-1, 608, 14, 14]               0
          Conv2d-189          [-1, 128, 14, 14]          77,824
     BatchNorm2d-190          [-1, 128, 14, 14]             256
            ReLU-191          [-1, 128, 14, 14]               0
          Conv2d-192           [-1, 32, 14, 14]          36,864
     BatchNorm2d-193          [-1, 640, 14, 14]           1,280
            ReLU-194          [-1, 640, 14, 14]               0
          Conv2d-195          [-1, 128, 14, 14]          81,920
     BatchNorm2d-196          [-1, 128, 14, 14]             256
            ReLU-197          [-1, 128, 14, 14]               0
          Conv2d-198           [-1, 32, 14, 14]          36,864
     BatchNorm2d-199          [-1, 672, 14, 14]           1,344
            ReLU-200          [-1, 672, 14, 14]               0
          Conv2d-201          [-1, 128, 14, 14]          86,016
     BatchNorm2d-202          [-1, 128, 14, 14]             256
            ReLU-203          [-1, 128, 14, 14]               0
          Conv2d-204           [-1, 32, 14, 14]          36,864
     BatchNorm2d-205          [-1, 704, 14, 14]           1,408
            ReLU-206          [-1, 704, 14, 14]               0
          Conv2d-207          [-1, 128, 14, 14]          90,112
     BatchNorm2d-208          [-1, 128, 14, 14]             256
            ReLU-209          [-1, 128, 14, 14]               0
          Conv2d-210           [-1, 32, 14, 14]          36,864
     BatchNorm2d-211          [-1, 736, 14, 14]           1,472
            ReLU-212          [-1, 736, 14, 14]               0
          Conv2d-213          [-1, 128, 14, 14]          94,208
     BatchNorm2d-214          [-1, 128, 14, 14]             256
            ReLU-215          [-1, 128, 14, 14]               0
          Conv2d-216           [-1, 32, 14, 14]          36,864
     BatchNorm2d-217          [-1, 768, 14, 14]           1,536
            ReLU-218          [-1, 768, 14, 14]               0
          Conv2d-219          [-1, 128, 14, 14]          98,304
     BatchNorm2d-220          [-1, 128, 14, 14]             256
            ReLU-221          [-1, 128, 14, 14]               0
          Conv2d-222           [-1, 32, 14, 14]          36,864
     BatchNorm2d-223          [-1, 800, 14, 14]           1,600
            ReLU-224          [-1, 800, 14, 14]               0
          Conv2d-225          [-1, 128, 14, 14]         102,400
     BatchNorm2d-226          [-1, 128, 14, 14]             256
            ReLU-227          [-1, 128, 14, 14]               0
          Conv2d-228           [-1, 32, 14, 14]          36,864
     BatchNorm2d-229          [-1, 832, 14, 14]           1,664
            ReLU-230          [-1, 832, 14, 14]               0
          Conv2d-231          [-1, 128, 14, 14]         106,496
     BatchNorm2d-232          [-1, 128, 14, 14]             256
            ReLU-233          [-1, 128, 14, 14]               0
          Conv2d-234           [-1, 32, 14, 14]          36,864
     BatchNorm2d-235          [-1, 864, 14, 14]           1,728
            ReLU-236          [-1, 864, 14, 14]               0
          Conv2d-237          [-1, 128, 14, 14]         110,592
     BatchNorm2d-238          [-1, 128, 14, 14]             256
            ReLU-239          [-1, 128, 14, 14]               0
          Conv2d-240           [-1, 32, 14, 14]          36,864
     BatchNorm2d-241          [-1, 896, 14, 14]           1,792
            ReLU-242          [-1, 896, 14, 14]               0
          Conv2d-243          [-1, 128, 14, 14]         114,688
     BatchNorm2d-244          [-1, 128, 14, 14]             256
            ReLU-245          [-1, 128, 14, 14]               0
          Conv2d-246           [-1, 32, 14, 14]          36,864
     BatchNorm2d-247          [-1, 928, 14, 14]           1,856
            ReLU-248          [-1, 928, 14, 14]               0
          Conv2d-249          [-1, 128, 14, 14]         118,784
     BatchNorm2d-250          [-1, 128, 14, 14]             256
            ReLU-251          [-1, 128, 14, 14]               0
          Conv2d-252           [-1, 32, 14, 14]          36,864
     BatchNorm2d-253          [-1, 960, 14, 14]           1,920
            ReLU-254          [-1, 960, 14, 14]               0
          Conv2d-255          [-1, 128, 14, 14]         122,880
     BatchNorm2d-256          [-1, 128, 14, 14]             256
            ReLU-257          [-1, 128, 14, 14]               0
          Conv2d-258           [-1, 32, 14, 14]          36,864
     BatchNorm2d-259          [-1, 992, 14, 14]           1,984
            ReLU-260          [-1, 992, 14, 14]               0
          Conv2d-261          [-1, 128, 14, 14]         126,976
     BatchNorm2d-262          [-1, 128, 14, 14]             256
            ReLU-263          [-1, 128, 14, 14]               0
          Conv2d-264           [-1, 32, 14, 14]          36,864
     BatchNorm2d-265         [-1, 1024, 14, 14]           2,048
            ReLU-266         [-1, 1024, 14, 14]               0
          Conv2d-267          [-1, 512, 14, 14]         524,288
       AvgPool2d-268            [-1, 512, 7, 7]               0
     BatchNorm2d-269            [-1, 512, 7, 7]           1,024
            ReLU-270            [-1, 512, 7, 7]               0
          Conv2d-271            [-1, 128, 7, 7]          65,536
     BatchNorm2d-272            [-1, 128, 7, 7]             256
            ReLU-273            [-1, 128, 7, 7]               0
          Conv2d-274             [-1, 32, 7, 7]          36,864
     BatchNorm2d-275            [-1, 544, 7, 7]           1,088
            ReLU-276            [-1, 544, 7, 7]               0
          Conv2d-277            [-1, 128, 7, 7]          69,632
     BatchNorm2d-278            [-1, 128, 7, 7]             256
            ReLU-279            [-1, 128, 7, 7]               0
          Conv2d-280             [-1, 32, 7, 7]          36,864
     BatchNorm2d-281            [-1, 576, 7, 7]           1,152
            ReLU-282            [-1, 576, 7, 7]               0
          Conv2d-283            [-1, 128, 7, 7]          73,728
     BatchNorm2d-284            [-1, 128, 7, 7]             256
            ReLU-285            [-1, 128, 7, 7]               0
          Conv2d-286             [-1, 32, 7, 7]          36,864
     BatchNorm2d-287            [-1, 608, 7, 7]           1,216
            ReLU-288            [-1, 608, 7, 7]               0
          Conv2d-289            [-1, 128, 7, 7]          77,824
     BatchNorm2d-290            [-1, 128, 7, 7]             256
            ReLU-291            [-1, 128, 7, 7]               0
          Conv2d-292             [-1, 32, 7, 7]          36,864
     BatchNorm2d-293            [-1, 640, 7, 7]           1,280
            ReLU-294            [-1, 640, 7, 7]               0
          Conv2d-295            [-1, 128, 7, 7]          81,920
     BatchNorm2d-296            [-1, 128, 7, 7]             256
            ReLU-297            [-1, 128, 7, 7]               0
          Conv2d-298             [-1, 32, 7, 7]          36,864
     BatchNorm2d-299            [-1, 672, 7, 7]           1,344
            ReLU-300            [-1, 672, 7, 7]               0
          Conv2d-301            [-1, 128, 7, 7]          86,016
     BatchNorm2d-302            [-1, 128, 7, 7]             256
            ReLU-303            [-1, 128, 7, 7]               0
          Conv2d-304             [-1, 32, 7, 7]          36,864
     BatchNorm2d-305            [-1, 704, 7, 7]           1,408
            ReLU-306            [-1, 704, 7, 7]               0
          Conv2d-307            [-1, 128, 7, 7]          90,112
     BatchNorm2d-308            [-1, 128, 7, 7]             256
            ReLU-309            [-1, 128, 7, 7]               0
          Conv2d-310             [-1, 32, 7, 7]          36,864
     BatchNorm2d-311            [-1, 736, 7, 7]           1,472
            ReLU-312            [-1, 736, 7, 7]               0
          Conv2d-313            [-1, 128, 7, 7]          94,208
     BatchNorm2d-314            [-1, 128, 7, 7]             256
            ReLU-315            [-1, 128, 7, 7]               0
          Conv2d-316             [-1, 32, 7, 7]          36,864
     BatchNorm2d-317            [-1, 768, 7, 7]           1,536
            ReLU-318            [-1, 768, 7, 7]               0
          Conv2d-319            [-1, 128, 7, 7]          98,304
     BatchNorm2d-320            [-1, 128, 7, 7]             256
            ReLU-321            [-1, 128, 7, 7]               0
          Conv2d-322             [-1, 32, 7, 7]          36,864
     BatchNorm2d-323            [-1, 800, 7, 7]           1,600
            ReLU-324            [-1, 800, 7, 7]               0
          Conv2d-325            [-1, 128, 7, 7]         102,400
     BatchNorm2d-326            [-1, 128, 7, 7]             256
            ReLU-327            [-1, 128, 7, 7]               0
          Conv2d-328             [-1, 32, 7, 7]          36,864
     BatchNorm2d-329            [-1, 832, 7, 7]           1,664
            ReLU-330            [-1, 832, 7, 7]               0
          Conv2d-331            [-1, 128, 7, 7]         106,496
     BatchNorm2d-332            [-1, 128, 7, 7]             256
            ReLU-333            [-1, 128, 7, 7]               0
          Conv2d-334             [-1, 32, 7, 7]          36,864
     BatchNorm2d-335            [-1, 864, 7, 7]           1,728
            ReLU-336            [-1, 864, 7, 7]               0
          Conv2d-337            [-1, 128, 7, 7]         110,592
     BatchNorm2d-338            [-1, 128, 7, 7]             256
            ReLU-339            [-1, 128, 7, 7]               0
          Conv2d-340             [-1, 32, 7, 7]          36,864
     BatchNorm2d-341            [-1, 896, 7, 7]           1,792
            ReLU-342            [-1, 896, 7, 7]               0
          Conv2d-343            [-1, 128, 7, 7]         114,688
     BatchNorm2d-344            [-1, 128, 7, 7]             256
            ReLU-345            [-1, 128, 7, 7]               0
          Conv2d-346             [-1, 32, 7, 7]          36,864
     BatchNorm2d-347            [-1, 928, 7, 7]           1,856
            ReLU-348            [-1, 928, 7, 7]               0
          Conv2d-349            [-1, 128, 7, 7]         118,784
     BatchNorm2d-350            [-1, 128, 7, 7]             256
            ReLU-351            [-1, 128, 7, 7]               0
          Conv2d-352             [-1, 32, 7, 7]          36,864
     BatchNorm2d-353            [-1, 960, 7, 7]           1,920
            ReLU-354            [-1, 960, 7, 7]               0
          Conv2d-355            [-1, 128, 7, 7]         122,880
     BatchNorm2d-356            [-1, 128, 7, 7]             256
            ReLU-357            [-1, 128, 7, 7]               0
          Conv2d-358             [-1, 32, 7, 7]          36,864
     BatchNorm2d-359            [-1, 992, 7, 7]           1,984
            ReLU-360            [-1, 992, 7, 7]               0
          Conv2d-361            [-1, 128, 7, 7]         126,976
     BatchNorm2d-362            [-1, 128, 7, 7]             256
            ReLU-363            [-1, 128, 7, 7]               0
          Conv2d-364             [-1, 32, 7, 7]          36,864
AdaptiveAvgPool2d-365           [-1, 1024, 1, 1]               0
          Linear-366                   [-1, 64]          65,600
            ReLU-367                   [-1, 64]               0
          Linear-368                 [-1, 1024]          66,560
         Sigmoid-369                 [-1, 1024]               0
Squeeze_excitation_layer-370           [-1, 1024, 7, 7]               0
     BatchNorm2d-371           [-1, 1024, 7, 7]           2,048
            ReLU-372           [-1, 1024, 7, 7]               0
          Linear-373                 [-1, 1000]       1,025,000
================================================================
Total params: 8,111,016
Trainable params: 8,111,016
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 294.99
Params size (MB): 30.94
Estimated Total Size (MB): 326.50
----------------------------------------------------------------

2.3 训练模型

2.3.1 设置超参数

python 复制代码
"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4  # 学习率
optimizer1 = torch.optim.SGD(model.parameters(), lr=learn_rate)# 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大
optimizer2 = torch.optim.Adam(model.parameters(), lr=learn_rate)  
lr_opt = optimizer2
model_opt = optimizer2
# 调用官方动态学习率接口时使用2
lambda1 = lambda epoch : 0.92 ** (epoch // 4)
# optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(lr_opt, lr_lambda=lambda1) #选定调整方法

2.3.2 编写训练函数

python 复制代码
"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)
        X, y = X.to(device), y.to(device) # 用于将数据存到显卡

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # 清空过往梯度
        loss.backward()  # 反向传播,计算当前梯度
        optimizer.step()  # 根据梯度更新网络参数

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.3.3 编写测试函数

python 复制代码
"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

2.3.4 正式训练

python 复制代码
"""训练模型--正式训练"""
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_test_acc=0

for epoch in range(epochs):
    milliseconds_t1 = int(time.time() * 1000)

    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(lr_opt, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, model_opt)
    scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = lr_opt.state_dict()['param_groups'][0]['lr']

    milliseconds_t2 = int(time.time() * 1000)
    template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E}')
    if best_test_acc < epoch_test_acc:
        best_test_acc = epoch_test_acc
        #备份最好的模型
        best_model = copy.deepcopy(model)
        template = (
            'Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E},Update the best model')
    print(
        template.format(epoch + 1, milliseconds_t2-milliseconds_t1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss, lr))
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
print('Done')
Epoch: 1, duration:12559ms, Train_acc:56.9%, Train_loss:4.304, Test_acc:72.0%,Test_loss:2.320, Lr:1.00E-04,Update the best model
Epoch: 2, duration:11948ms, Train_acc:68.6%, Train_loss:1.381, Test_acc:73.0%,Test_loss:0.831, Lr:1.00E-04,Update the best model
Epoch: 3, duration:11949ms, Train_acc:74.2%, Train_loss:0.674, Test_acc:76.9%,Test_loss:0.561, Lr:1.00E-04,Update the best model
Epoch: 4, duration:12024ms, Train_acc:77.8%, Train_loss:0.532, Test_acc:74.4%,Test_loss:0.516, Lr:1.00E-04
Epoch: 5, duration:11876ms, Train_acc:80.5%, Train_loss:0.465, Test_acc:80.4%,Test_loss:0.472, Lr:1.00E-04,Update the best model
Epoch: 6, duration:11869ms, Train_acc:84.1%, Train_loss:0.409, Test_acc:82.3%,Test_loss:0.404, Lr:1.00E-04,Update the best model
Epoch: 7, duration:12088ms, Train_acc:84.1%, Train_loss:0.378, Test_acc:83.2%,Test_loss:0.355, Lr:1.00E-04,Update the best model
Epoch: 8, duration:12025ms, Train_acc:86.0%, Train_loss:0.348, Test_acc:85.3%,Test_loss:0.349, Lr:1.00E-04,Update the best model
Epoch: 9, duration:12019ms, Train_acc:86.2%, Train_loss:0.334, Test_acc:85.5%,Test_loss:0.360, Lr:1.00E-04,Update the best model
Epoch:10, duration:12027ms, Train_acc:88.3%, Train_loss:0.290, Test_acc:88.8%,Test_loss:0.260, Lr:1.00E-04,Update the best model
Epoch:11, duration:11865ms, Train_acc:88.9%, Train_loss:0.273, Test_acc:86.7%,Test_loss:0.311, Lr:1.00E-04
Epoch:12, duration:12054ms, Train_acc:90.0%, Train_loss:0.259, Test_acc:89.3%,Test_loss:0.271, Lr:1.00E-04,Update the best model
Epoch:13, duration:11983ms, Train_acc:90.3%, Train_loss:0.236, Test_acc:88.8%,Test_loss:0.272, Lr:1.00E-04
Epoch:14, duration:11980ms, Train_acc:90.1%, Train_loss:0.246, Test_acc:90.0%,Test_loss:0.229, Lr:1.00E-04,Update the best model
Epoch:15, duration:11936ms, Train_acc:91.4%, Train_loss:0.217, Test_acc:90.2%,Test_loss:0.256, Lr:1.00E-04,Update the best model
Epoch:16, duration:11935ms, Train_acc:93.8%, Train_loss:0.170, Test_acc:91.4%,Test_loss:0.237, Lr:1.00E-04,Update the best model
Epoch:17, duration:11980ms, Train_acc:93.7%, Train_loss:0.178, Test_acc:87.6%,Test_loss:0.353, Lr:1.00E-04
Epoch:18, duration:12344ms, Train_acc:92.8%, Train_loss:0.179, Test_acc:92.3%,Test_loss:0.190, Lr:1.00E-04,Update the best model
Epoch:19, duration:12301ms, Train_acc:95.3%, Train_loss:0.128, Test_acc:89.3%,Test_loss:0.275, Lr:1.00E-04
Epoch:20, duration:11914ms, Train_acc:95.3%, Train_loss:0.129, Test_acc:92.8%,Test_loss:0.218, Lr:1.00E-04,Update the best model
Done

2.4 结果可视化

python 复制代码
"""训练模型--结果可视化"""
epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.4 指定图片进行预测

python 复制代码
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
    plt.show()

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
 
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

"""指定图片进行预测"""
classes = list(total_data.class_to_idx)
# 预测训练集中的某张照片
predict_one_image(image_path=str(Path(data_dir) / "Monkeypox/M01_01_01.jpg"),
                  model=model,
                  transform=train_transforms,
                  classes=classes)

输出

预测结果是:Monkeypox

2.6 模型评估

python 复制代码
"""模型评估"""
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
# 查看是否与我们记录的最高准确率一致
print(epoch_test_acc, epoch_test_loss)

输出

0.9277389277389277 0.21906232248459542

3 tensorflow实现DenseNet算法

3.1.引入库

python 复制代码
from PIL import Image
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt

# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
import tensorflow as tf
from keras import layers, models, Input
from keras.layers import Input, Activation, BatchNormalization, Flatten
from keras.layers import Dense, Conv2D, MaxPooling2D, ZeroPadding2D, GlobalMaxPooling2D, AveragePooling2D, Flatten, \
    Dropout, BatchNormalization, GlobalAveragePooling2D
from keras.models import Model
from keras import regularizers
from tensorflow import keras
from keras.callbacks import ModelCheckpoint
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

3.2.设置GPU(如果使用的是CPU可以忽略这步)

python 复制代码
'''前期工作-设置GPU(如果使用的是CPU可以忽略这步)'''
# 检查GPU是否可用
print(tf.test.is_built_with_cuda())
gpus = tf.config.list_physical_devices("GPU")
print(gpus)
if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

执行结果

True
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

3.3.导入数据

python 复制代码
'''前期工作-导入数据'''
data_dir = r"D:\DeepLearning\data\monkeypox_recognition"
data_dir = Path(data_dir)

3.4.查看数据

python 复制代码
'''前期工作-查看数据'''
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
image_list = list(data_dir.glob('Monkeypox/*.jpg'))
image = Image.open(str(image_list[1]))
# 查看图像实例的属性
print(image.format, image.size, image.mode)
plt.imshow(image)
plt.axis("off")
plt.show()

执行结果:

图片总数为: 2142
JPEG (224, 224) RGB

3.5.加载数据

python 复制代码
'''数据预处理-加载数据'''
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

运行结果:

html 复制代码
Found 2142 files belonging to 2 classes.
Using 1714 files for training.
Found 2142 files belonging to 2 classes.
Using 428 files for validation.
['Monkeypox', 'Others']

3.6.再次检查数据

python{.line-numbers} 复制代码
'''数据预处理-再次检查数据'''
# Image_batch是形状的张量(16, 336, 336, 3)。这是一批形状336x336x3的16张图片(最后一维指的是彩色通道RGB)。
# Label_batch是形状(16,)的张量,这些标签对应16张图片
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

运行结果

(32, 224, 224, 3)
(32,)

3.7.配置数据集

python 复制代码
'''数据预处理-配置数据集'''
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

3.8.可视化数据

python 复制代码
'''数据预处理-可视化数据'''
plt.figure(figsize=(10, 5))
for images, labels in train_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]], fontsize=10)
        plt.axis("off")
# 显示图片
plt.show()

3.9.构建DenseNet网络

python 复制代码
"""构建DenseNet网络"""
def conv_fn(x, growth_rate):
    x1 = keras.layers.BatchNormalization()(x)
    x1 = keras.layers.Activation('relu')(x1)
    x1 = keras.layers.Conv2D(4 * growth_rate, 1, 1, padding="same", use_bias=False)(x1)
    x1 = keras.layers.BatchNormalization()(x1)
    x1 = keras.layers.Activation("relu")(x1)
    x1 = keras.layers.Conv2D(growth_rate, 3, 1, padding="same", use_bias=False)(x1)
    return keras.layers.Concatenate(axis=3)([x, x1])


def dense_block(x, block, growth_rate=32):
    for i in range(block):
        x = conv_fn(x, growth_rate)
    return x


k = keras.backend
def trans_block(x, theta):
    x1 = keras.layers.BatchNormalization()(x)
    x1 = keras.layers.Activation("relu")(x1)
    x1 = keras.layers.Conv2D(int(k.int_shape(x)[3] * theta), 1, 1, use_bias=False)(x1)
    x1 = keras.layers.AveragePooling2D(pool_size=(2, 2), strides=2, padding="valid")(x1)
    return x1


def densenet(input_shape, block, n_classes=1000):
    # 56*56*64
    x_input = keras.layers.Input(shape=input_shape)
    x = keras.layers.Conv2D(64, kernel_size=(7, 7), strides=2, padding="same", use_bias=False)(x_input)
    x = keras.layers.BatchNormalization()(x)
    x = keras.layers.MaxPooling2D(pool_size=3, strides=2, padding="same")(x)
    x = dense_block(x, block[0])
    x = trans_block(x, 0.5)  # 28*28
    x = dense_block(x, block[1])
    x = trans_block(x, 0.5)  # 14*14
    x = dense_block(x, block[2])
    x = trans_block(x, 0.5)  # 7*7
    x = dense_block(x, block[3])
    x = keras.layers.BatchNormalization()(x)
    x = keras.layers.Activation("relu")(x)
    x = keras.layers.GlobalAveragePooling2D()(x)
    outputs = keras.layers.Dense(n_classes, activation="softmax")(x)
    model = keras.models.Model(inputs=[x_input], outputs=[outputs])
    return model


model_121 = densenet([224, 224, 3], [6, 12, 24, 16])  # DenseNet-121
model_169 = densenet([224, 224, 3], [6, 12, 32, 32])  # DenseNet-169
model_201 = densenet([224, 224, 3], [6, 12, 48, 32])  # DenseNet-201
model_269 = densenet([224, 224, 3], [6, 12, 64, 48])  # DenseNet-269
model = model_121
model.summary()

网络结构结果如下:

Model: "model"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 input_1 (InputLayer)           [(None, 224, 224, 3  0           []                               
                                )]                                                                
                                                                                                  
 conv2d (Conv2D)                (None, 112, 112, 64  9408        ['input_1[0][0]']                
                                )                                                                 
                                                                                                  
 batch_normalization (BatchNorm  (None, 112, 112, 64  256        ['conv2d[0][0]']                 
 alization)                     )                                                                 
                                                                                                  
 max_pooling2d (MaxPooling2D)   (None, 56, 56, 64)   0           ['batch_normalization[0][0]']    
                                                                                                  
 batch_normalization_1 (BatchNo  (None, 56, 56, 64)  256         ['max_pooling2d[0][0]']          
 rmalization)                                                                                     
                                                                                                  
 activation (Activation)        (None, 56, 56, 64)   0           ['batch_normalization_1[0][0]']  
                                                                                                  
 conv2d_1 (Conv2D)              (None, 56, 56, 128)  8192        ['activation[0][0]']             
                                                                                                  
 batch_normalization_2 (BatchNo  (None, 56, 56, 128)  512        ['conv2d_1[0][0]']               
 rmalization)                                                                                     
                                                                                                  
 activation_1 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_2[0][0]']  
                                                                                                  
 conv2d_2 (Conv2D)              (None, 56, 56, 32)   36864       ['activation_1[0][0]']           
                                                                                                  
 concatenate (Concatenate)      (None, 56, 56, 96)   0           ['max_pooling2d[0][0]',          
                                                                  'conv2d_2[0][0]']               
                                                                                                  
 batch_normalization_3 (BatchNo  (None, 56, 56, 96)  384         ['concatenate[0][0]']            
 rmalization)                                                                                     
                                                                                                  
 activation_2 (Activation)      (None, 56, 56, 96)   0           ['batch_normalization_3[0][0]']  
                                                                                                  
 conv2d_3 (Conv2D)              (None, 56, 56, 128)  12288       ['activation_2[0][0]']           
                                                                                                  
 batch_normalization_4 (BatchNo  (None, 56, 56, 128)  512        ['conv2d_3[0][0]']               
 rmalization)                                                                                     
                                                                                                  
 activation_3 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_4[0][0]']  
                                                                                                  
 conv2d_4 (Conv2D)              (None, 56, 56, 32)   36864       ['activation_3[0][0]']           
                                                                                                  
 concatenate_1 (Concatenate)    (None, 56, 56, 128)  0           ['concatenate[0][0]',            
                                                                  'conv2d_4[0][0]']               
                                                                                                  
 batch_normalization_5 (BatchNo  (None, 56, 56, 128)  512        ['concatenate_1[0][0]']          
 rmalization)                                                                                     
                                                                                                  
 activation_4 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_5[0][0]']  
                                                                                                  
 conv2d_5 (Conv2D)              (None, 56, 56, 128)  16384       ['activation_4[0][0]']           
                                                                                                  
 batch_normalization_6 (BatchNo  (None, 56, 56, 128)  512        ['conv2d_5[0][0]']               
 rmalization)                                                                                     
                                                                                                  
 activation_5 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_6[0][0]']  
                                                                                                  
 conv2d_6 (Conv2D)              (None, 56, 56, 32)   36864       ['activation_5[0][0]']           
                                                                                                  
 concatenate_2 (Concatenate)    (None, 56, 56, 160)  0           ['concatenate_1[0][0]',          
                                                                  'conv2d_6[0][0]']               
                                                                                                  
 batch_normalization_7 (BatchNo  (None, 56, 56, 160)  640        ['concatenate_2[0][0]']          
 rmalization)                                                                                     
                                                                                                  
 activation_6 (Activation)      (None, 56, 56, 160)  0           ['batch_normalization_7[0][0]']  
                                                                                                  
 conv2d_7 (Conv2D)              (None, 56, 56, 128)  20480       ['activation_6[0][0]']           
                                                                                                  
 batch_normalization_8 (BatchNo  (None, 56, 56, 128)  512        ['conv2d_7[0][0]']               
 rmalization)                                                                                     
                                                                                                  
 activation_7 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_8[0][0]']  
                                                                                                  
 conv2d_8 (Conv2D)              (None, 56, 56, 32)   36864       ['activation_7[0][0]']           
                                                                                                  
 concatenate_3 (Concatenate)    (None, 56, 56, 192)  0           ['concatenate_2[0][0]',          
                                                                  'conv2d_8[0][0]']               
                                                                                                  
 batch_normalization_9 (BatchNo  (None, 56, 56, 192)  768        ['concatenate_3[0][0]']          
 rmalization)                                                                                     
                                                                                                  
 activation_8 (Activation)      (None, 56, 56, 192)  0           ['batch_normalization_9[0][0]']  
                                                                                                  
 conv2d_9 (Conv2D)              (None, 56, 56, 128)  24576       ['activation_8[0][0]']           
                                                                                                  
 batch_normalization_10 (BatchN  (None, 56, 56, 128)  512        ['conv2d_9[0][0]']               
 ormalization)                                                                                    
                                                                                                  
 activation_9 (Activation)      (None, 56, 56, 128)  0           ['batch_normalization_10[0][0]'] 
                                                                                                  
 conv2d_10 (Conv2D)             (None, 56, 56, 32)   36864       ['activation_9[0][0]']           
                                                                                                  
 concatenate_4 (Concatenate)    (None, 56, 56, 224)  0           ['concatenate_3[0][0]',          
                                                                  'conv2d_10[0][0]']              
                                                                                                  
 batch_normalization_11 (BatchN  (None, 56, 56, 224)  896        ['concatenate_4[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_10 (Activation)     (None, 56, 56, 224)  0           ['batch_normalization_11[0][0]'] 
                                                                                                  
 conv2d_11 (Conv2D)             (None, 56, 56, 128)  28672       ['activation_10[0][0]']          
                                                                                                  
 batch_normalization_12 (BatchN  (None, 56, 56, 128)  512        ['conv2d_11[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_11 (Activation)     (None, 56, 56, 128)  0           ['batch_normalization_12[0][0]'] 
                                                                                                  
 conv2d_12 (Conv2D)             (None, 56, 56, 32)   36864       ['activation_11[0][0]']          
                                                                                                  
 concatenate_5 (Concatenate)    (None, 56, 56, 256)  0           ['concatenate_4[0][0]',          
                                                                  'conv2d_12[0][0]']              
                                                                                                  
 batch_normalization_13 (BatchN  (None, 56, 56, 256)  1024       ['concatenate_5[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_12 (Activation)     (None, 56, 56, 256)  0           ['batch_normalization_13[0][0]'] 
                                                                                                  
 conv2d_13 (Conv2D)             (None, 56, 56, 128)  32768       ['activation_12[0][0]']          
                                                                                                  
 average_pooling2d (AveragePool  (None, 28, 28, 128)  0          ['conv2d_13[0][0]']              
 ing2D)                                                                                           
                                                                                                  
 batch_normalization_14 (BatchN  (None, 28, 28, 128)  512        ['average_pooling2d[0][0]']      
 ormalization)                                                                                    
                                                                                                  
 activation_13 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_14[0][0]'] 
                                                                                                  
 conv2d_14 (Conv2D)             (None, 28, 28, 128)  16384       ['activation_13[0][0]']          
                                                                                                  
 batch_normalization_15 (BatchN  (None, 28, 28, 128)  512        ['conv2d_14[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_14 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_15[0][0]'] 
                                                                                                  
 conv2d_15 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_14[0][0]']          
                                                                                                  
 concatenate_6 (Concatenate)    (None, 28, 28, 160)  0           ['average_pooling2d[0][0]',      
                                                                  'conv2d_15[0][0]']              
                                                                                                  
 batch_normalization_16 (BatchN  (None, 28, 28, 160)  640        ['concatenate_6[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_15 (Activation)     (None, 28, 28, 160)  0           ['batch_normalization_16[0][0]'] 
                                                                                                  
 conv2d_16 (Conv2D)             (None, 28, 28, 128)  20480       ['activation_15[0][0]']          
                                                                                                  
 batch_normalization_17 (BatchN  (None, 28, 28, 128)  512        ['conv2d_16[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_16 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_17[0][0]'] 
                                                                                                  
 conv2d_17 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_16[0][0]']          
                                                                                                  
 concatenate_7 (Concatenate)    (None, 28, 28, 192)  0           ['concatenate_6[0][0]',          
                                                                  'conv2d_17[0][0]']              
                                                                                                  
 batch_normalization_18 (BatchN  (None, 28, 28, 192)  768        ['concatenate_7[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_17 (Activation)     (None, 28, 28, 192)  0           ['batch_normalization_18[0][0]'] 
                                                                                                  
 conv2d_18 (Conv2D)             (None, 28, 28, 128)  24576       ['activation_17[0][0]']          
                                                                                                  
 batch_normalization_19 (BatchN  (None, 28, 28, 128)  512        ['conv2d_18[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_18 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_19[0][0]'] 
                                                                                                  
 conv2d_19 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_18[0][0]']          
                                                                                                  
 concatenate_8 (Concatenate)    (None, 28, 28, 224)  0           ['concatenate_7[0][0]',          
                                                                  'conv2d_19[0][0]']              
                                                                                                  
 batch_normalization_20 (BatchN  (None, 28, 28, 224)  896        ['concatenate_8[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_19 (Activation)     (None, 28, 28, 224)  0           ['batch_normalization_20[0][0]'] 
                                                                                                  
 conv2d_20 (Conv2D)             (None, 28, 28, 128)  28672       ['activation_19[0][0]']          
                                                                                                  
 batch_normalization_21 (BatchN  (None, 28, 28, 128)  512        ['conv2d_20[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_20 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_21[0][0]'] 
                                                                                                  
 conv2d_21 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_20[0][0]']          
                                                                                                  
 concatenate_9 (Concatenate)    (None, 28, 28, 256)  0           ['concatenate_8[0][0]',          
                                                                  'conv2d_21[0][0]']              
                                                                                                  
 batch_normalization_22 (BatchN  (None, 28, 28, 256)  1024       ['concatenate_9[0][0]']          
 ormalization)                                                                                    
                                                                                                  
 activation_21 (Activation)     (None, 28, 28, 256)  0           ['batch_normalization_22[0][0]'] 
                                                                                                  
 conv2d_22 (Conv2D)             (None, 28, 28, 128)  32768       ['activation_21[0][0]']          
                                                                                                  
 batch_normalization_23 (BatchN  (None, 28, 28, 128)  512        ['conv2d_22[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_22 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_23[0][0]'] 
                                                                                                  
 conv2d_23 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_22[0][0]']          
                                                                                                  
 concatenate_10 (Concatenate)   (None, 28, 28, 288)  0           ['concatenate_9[0][0]',          
                                                                  'conv2d_23[0][0]']              
                                                                                                  
 batch_normalization_24 (BatchN  (None, 28, 28, 288)  1152       ['concatenate_10[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_23 (Activation)     (None, 28, 28, 288)  0           ['batch_normalization_24[0][0]'] 
                                                                                                  
 conv2d_24 (Conv2D)             (None, 28, 28, 128)  36864       ['activation_23[0][0]']          
                                                                                                  
 batch_normalization_25 (BatchN  (None, 28, 28, 128)  512        ['conv2d_24[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_24 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_25[0][0]'] 
                                                                                                  
 conv2d_25 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_24[0][0]']          
                                                                                                  
 concatenate_11 (Concatenate)   (None, 28, 28, 320)  0           ['concatenate_10[0][0]',         
                                                                  'conv2d_25[0][0]']              
                                                                                                  
 batch_normalization_26 (BatchN  (None, 28, 28, 320)  1280       ['concatenate_11[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_25 (Activation)     (None, 28, 28, 320)  0           ['batch_normalization_26[0][0]'] 
                                                                                                  
 conv2d_26 (Conv2D)             (None, 28, 28, 128)  40960       ['activation_25[0][0]']          
                                                                                                  
 batch_normalization_27 (BatchN  (None, 28, 28, 128)  512        ['conv2d_26[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_26 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_27[0][0]'] 
                                                                                                  
 conv2d_27 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_26[0][0]']          
                                                                                                  
 concatenate_12 (Concatenate)   (None, 28, 28, 352)  0           ['concatenate_11[0][0]',         
                                                                  'conv2d_27[0][0]']              
                                                                                                  
 batch_normalization_28 (BatchN  (None, 28, 28, 352)  1408       ['concatenate_12[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_27 (Activation)     (None, 28, 28, 352)  0           ['batch_normalization_28[0][0]'] 
                                                                                                  
 conv2d_28 (Conv2D)             (None, 28, 28, 128)  45056       ['activation_27[0][0]']          
                                                                                                  
 batch_normalization_29 (BatchN  (None, 28, 28, 128)  512        ['conv2d_28[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_28 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_29[0][0]'] 
                                                                                                  
 conv2d_29 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_28[0][0]']          
                                                                                                  
 concatenate_13 (Concatenate)   (None, 28, 28, 384)  0           ['concatenate_12[0][0]',         
                                                                  'conv2d_29[0][0]']              
                                                                                                  
 batch_normalization_30 (BatchN  (None, 28, 28, 384)  1536       ['concatenate_13[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_29 (Activation)     (None, 28, 28, 384)  0           ['batch_normalization_30[0][0]'] 
                                                                                                  
 conv2d_30 (Conv2D)             (None, 28, 28, 128)  49152       ['activation_29[0][0]']          
                                                                                                  
 batch_normalization_31 (BatchN  (None, 28, 28, 128)  512        ['conv2d_30[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_30 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_31[0][0]'] 
                                                                                                  
 conv2d_31 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_30[0][0]']          
                                                                                                  
 concatenate_14 (Concatenate)   (None, 28, 28, 416)  0           ['concatenate_13[0][0]',         
                                                                  'conv2d_31[0][0]']              
                                                                                                  
 batch_normalization_32 (BatchN  (None, 28, 28, 416)  1664       ['concatenate_14[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_31 (Activation)     (None, 28, 28, 416)  0           ['batch_normalization_32[0][0]'] 
                                                                                                  
 conv2d_32 (Conv2D)             (None, 28, 28, 128)  53248       ['activation_31[0][0]']          
                                                                                                  
 batch_normalization_33 (BatchN  (None, 28, 28, 128)  512        ['conv2d_32[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_32 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_33[0][0]'] 
                                                                                                  
 conv2d_33 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_32[0][0]']          
                                                                                                  
 concatenate_15 (Concatenate)   (None, 28, 28, 448)  0           ['concatenate_14[0][0]',         
                                                                  'conv2d_33[0][0]']              
                                                                                                  
 batch_normalization_34 (BatchN  (None, 28, 28, 448)  1792       ['concatenate_15[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_33 (Activation)     (None, 28, 28, 448)  0           ['batch_normalization_34[0][0]'] 
                                                                                                  
 conv2d_34 (Conv2D)             (None, 28, 28, 128)  57344       ['activation_33[0][0]']          
                                                                                                  
 batch_normalization_35 (BatchN  (None, 28, 28, 128)  512        ['conv2d_34[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_34 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_35[0][0]'] 
                                                                                                  
 conv2d_35 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_34[0][0]']          
                                                                                                  
 concatenate_16 (Concatenate)   (None, 28, 28, 480)  0           ['concatenate_15[0][0]',         
                                                                  'conv2d_35[0][0]']              
                                                                                                  
 batch_normalization_36 (BatchN  (None, 28, 28, 480)  1920       ['concatenate_16[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_35 (Activation)     (None, 28, 28, 480)  0           ['batch_normalization_36[0][0]'] 
                                                                                                  
 conv2d_36 (Conv2D)             (None, 28, 28, 128)  61440       ['activation_35[0][0]']          
                                                                                                  
 batch_normalization_37 (BatchN  (None, 28, 28, 128)  512        ['conv2d_36[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_36 (Activation)     (None, 28, 28, 128)  0           ['batch_normalization_37[0][0]'] 
                                                                                                  
 conv2d_37 (Conv2D)             (None, 28, 28, 32)   36864       ['activation_36[0][0]']          
                                                                                                  
 concatenate_17 (Concatenate)   (None, 28, 28, 512)  0           ['concatenate_16[0][0]',         
                                                                  'conv2d_37[0][0]']              
                                                                                                  
 batch_normalization_38 (BatchN  (None, 28, 28, 512)  2048       ['concatenate_17[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_37 (Activation)     (None, 28, 28, 512)  0           ['batch_normalization_38[0][0]'] 
                                                                                                  
 conv2d_38 (Conv2D)             (None, 28, 28, 256)  131072      ['activation_37[0][0]']          
                                                                                                  
 average_pooling2d_1 (AveragePo  (None, 14, 14, 256)  0          ['conv2d_38[0][0]']              
 oling2D)                                                                                         
                                                                                                  
 batch_normalization_39 (BatchN  (None, 14, 14, 256)  1024       ['average_pooling2d_1[0][0]']    
 ormalization)                                                                                    
                                                                                                  
 activation_38 (Activation)     (None, 14, 14, 256)  0           ['batch_normalization_39[0][0]'] 
                                                                                                  
 conv2d_39 (Conv2D)             (None, 14, 14, 128)  32768       ['activation_38[0][0]']          
                                                                                                  
 batch_normalization_40 (BatchN  (None, 14, 14, 128)  512        ['conv2d_39[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_39 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_40[0][0]'] 
                                                                                                  
 conv2d_40 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_39[0][0]']          
                                                                                                  
 concatenate_18 (Concatenate)   (None, 14, 14, 288)  0           ['average_pooling2d_1[0][0]',    
                                                                  'conv2d_40[0][0]']              
                                                                                                  
 batch_normalization_41 (BatchN  (None, 14, 14, 288)  1152       ['concatenate_18[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_40 (Activation)     (None, 14, 14, 288)  0           ['batch_normalization_41[0][0]'] 
                                                                                                  
 conv2d_41 (Conv2D)             (None, 14, 14, 128)  36864       ['activation_40[0][0]']          
                                                                                                  
 batch_normalization_42 (BatchN  (None, 14, 14, 128)  512        ['conv2d_41[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_41 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_42[0][0]'] 
                                                                                                  
 conv2d_42 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_41[0][0]']          
                                                                                                  
 concatenate_19 (Concatenate)   (None, 14, 14, 320)  0           ['concatenate_18[0][0]',         
                                                                  'conv2d_42[0][0]']              
                                                                                                  
 batch_normalization_43 (BatchN  (None, 14, 14, 320)  1280       ['concatenate_19[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_42 (Activation)     (None, 14, 14, 320)  0           ['batch_normalization_43[0][0]'] 
                                                                                                  
 conv2d_43 (Conv2D)             (None, 14, 14, 128)  40960       ['activation_42[0][0]']          
                                                                                                  
 batch_normalization_44 (BatchN  (None, 14, 14, 128)  512        ['conv2d_43[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_43 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_44[0][0]'] 
                                                                                                  
 conv2d_44 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_43[0][0]']          
                                                                                                  
 concatenate_20 (Concatenate)   (None, 14, 14, 352)  0           ['concatenate_19[0][0]',         
                                                                  'conv2d_44[0][0]']              
                                                                                                  
 batch_normalization_45 (BatchN  (None, 14, 14, 352)  1408       ['concatenate_20[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_44 (Activation)     (None, 14, 14, 352)  0           ['batch_normalization_45[0][0]'] 
                                                                                                  
 conv2d_45 (Conv2D)             (None, 14, 14, 128)  45056       ['activation_44[0][0]']          
                                                                                                  
 batch_normalization_46 (BatchN  (None, 14, 14, 128)  512        ['conv2d_45[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_45 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_46[0][0]'] 
                                                                                                  
 conv2d_46 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_45[0][0]']          
                                                                                                  
 concatenate_21 (Concatenate)   (None, 14, 14, 384)  0           ['concatenate_20[0][0]',         
                                                                  'conv2d_46[0][0]']              
                                                                                                  
 batch_normalization_47 (BatchN  (None, 14, 14, 384)  1536       ['concatenate_21[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_46 (Activation)     (None, 14, 14, 384)  0           ['batch_normalization_47[0][0]'] 
                                                                                                  
 conv2d_47 (Conv2D)             (None, 14, 14, 128)  49152       ['activation_46[0][0]']          
                                                                                                  
 batch_normalization_48 (BatchN  (None, 14, 14, 128)  512        ['conv2d_47[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_47 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_48[0][0]'] 
                                                                                                  
 conv2d_48 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_47[0][0]']          
                                                                                                  
 concatenate_22 (Concatenate)   (None, 14, 14, 416)  0           ['concatenate_21[0][0]',         
                                                                  'conv2d_48[0][0]']              
                                                                                                  
 batch_normalization_49 (BatchN  (None, 14, 14, 416)  1664       ['concatenate_22[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_48 (Activation)     (None, 14, 14, 416)  0           ['batch_normalization_49[0][0]'] 
                                                                                                  
 conv2d_49 (Conv2D)             (None, 14, 14, 128)  53248       ['activation_48[0][0]']          
                                                                                                  
 batch_normalization_50 (BatchN  (None, 14, 14, 128)  512        ['conv2d_49[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_49 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_50[0][0]'] 
                                                                                                  
 conv2d_50 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_49[0][0]']          
                                                                                                  
 concatenate_23 (Concatenate)   (None, 14, 14, 448)  0           ['concatenate_22[0][0]',         
                                                                  'conv2d_50[0][0]']              
                                                                                                  
 batch_normalization_51 (BatchN  (None, 14, 14, 448)  1792       ['concatenate_23[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_50 (Activation)     (None, 14, 14, 448)  0           ['batch_normalization_51[0][0]'] 
                                                                                                  
 conv2d_51 (Conv2D)             (None, 14, 14, 128)  57344       ['activation_50[0][0]']          
                                                                                                  
 batch_normalization_52 (BatchN  (None, 14, 14, 128)  512        ['conv2d_51[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_51 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_52[0][0]'] 
                                                                                                  
 conv2d_52 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_51[0][0]']          
                                                                                                  
 concatenate_24 (Concatenate)   (None, 14, 14, 480)  0           ['concatenate_23[0][0]',         
                                                                  'conv2d_52[0][0]']              
                                                                                                  
 batch_normalization_53 (BatchN  (None, 14, 14, 480)  1920       ['concatenate_24[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_52 (Activation)     (None, 14, 14, 480)  0           ['batch_normalization_53[0][0]'] 
                                                                                                  
 conv2d_53 (Conv2D)             (None, 14, 14, 128)  61440       ['activation_52[0][0]']          
                                                                                                  
 batch_normalization_54 (BatchN  (None, 14, 14, 128)  512        ['conv2d_53[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_53 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_54[0][0]'] 
                                                                                                  
 conv2d_54 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_53[0][0]']          
                                                                                                  
 concatenate_25 (Concatenate)   (None, 14, 14, 512)  0           ['concatenate_24[0][0]',         
                                                                  'conv2d_54[0][0]']              
                                                                                                  
 batch_normalization_55 (BatchN  (None, 14, 14, 512)  2048       ['concatenate_25[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_54 (Activation)     (None, 14, 14, 512)  0           ['batch_normalization_55[0][0]'] 
                                                                                                  
 conv2d_55 (Conv2D)             (None, 14, 14, 128)  65536       ['activation_54[0][0]']          
                                                                                                  
 batch_normalization_56 (BatchN  (None, 14, 14, 128)  512        ['conv2d_55[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_55 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_56[0][0]'] 
                                                                                                  
 conv2d_56 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_55[0][0]']          
                                                                                                  
 concatenate_26 (Concatenate)   (None, 14, 14, 544)  0           ['concatenate_25[0][0]',         
                                                                  'conv2d_56[0][0]']              
                                                                                                  
 batch_normalization_57 (BatchN  (None, 14, 14, 544)  2176       ['concatenate_26[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_56 (Activation)     (None, 14, 14, 544)  0           ['batch_normalization_57[0][0]'] 
                                                                                                  
 conv2d_57 (Conv2D)             (None, 14, 14, 128)  69632       ['activation_56[0][0]']          
                                                                                                  
 batch_normalization_58 (BatchN  (None, 14, 14, 128)  512        ['conv2d_57[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_57 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_58[0][0]'] 
                                                                                                  
 conv2d_58 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_57[0][0]']          
                                                                                                  
 concatenate_27 (Concatenate)   (None, 14, 14, 576)  0           ['concatenate_26[0][0]',         
                                                                  'conv2d_58[0][0]']              
                                                                                                  
 batch_normalization_59 (BatchN  (None, 14, 14, 576)  2304       ['concatenate_27[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_58 (Activation)     (None, 14, 14, 576)  0           ['batch_normalization_59[0][0]'] 
                                                                                                  
 conv2d_59 (Conv2D)             (None, 14, 14, 128)  73728       ['activation_58[0][0]']          
                                                                                                  
 batch_normalization_60 (BatchN  (None, 14, 14, 128)  512        ['conv2d_59[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_59 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_60[0][0]'] 
                                                                                                  
 conv2d_60 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_59[0][0]']          
                                                                                                  
 concatenate_28 (Concatenate)   (None, 14, 14, 608)  0           ['concatenate_27[0][0]',         
                                                                  'conv2d_60[0][0]']              
                                                                                                  
 batch_normalization_61 (BatchN  (None, 14, 14, 608)  2432       ['concatenate_28[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_60 (Activation)     (None, 14, 14, 608)  0           ['batch_normalization_61[0][0]'] 
                                                                                                  
 conv2d_61 (Conv2D)             (None, 14, 14, 128)  77824       ['activation_60[0][0]']          
                                                                                                  
 batch_normalization_62 (BatchN  (None, 14, 14, 128)  512        ['conv2d_61[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_61 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_62[0][0]'] 
                                                                                                  
 conv2d_62 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_61[0][0]']          
                                                                                                  
 concatenate_29 (Concatenate)   (None, 14, 14, 640)  0           ['concatenate_28[0][0]',         
                                                                  'conv2d_62[0][0]']              
                                                                                                  
 batch_normalization_63 (BatchN  (None, 14, 14, 640)  2560       ['concatenate_29[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_62 (Activation)     (None, 14, 14, 640)  0           ['batch_normalization_63[0][0]'] 
                                                                                                  
 conv2d_63 (Conv2D)             (None, 14, 14, 128)  81920       ['activation_62[0][0]']          
                                                                                                  
 batch_normalization_64 (BatchN  (None, 14, 14, 128)  512        ['conv2d_63[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_63 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_64[0][0]'] 
                                                                                                  
 conv2d_64 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_63[0][0]']          
                                                                                                  
 concatenate_30 (Concatenate)   (None, 14, 14, 672)  0           ['concatenate_29[0][0]',         
                                                                  'conv2d_64[0][0]']              
                                                                                                  
 batch_normalization_65 (BatchN  (None, 14, 14, 672)  2688       ['concatenate_30[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_64 (Activation)     (None, 14, 14, 672)  0           ['batch_normalization_65[0][0]'] 
                                                                                                  
 conv2d_65 (Conv2D)             (None, 14, 14, 128)  86016       ['activation_64[0][0]']          
                                                                                                  
 batch_normalization_66 (BatchN  (None, 14, 14, 128)  512        ['conv2d_65[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_65 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_66[0][0]'] 
                                                                                                  
 conv2d_66 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_65[0][0]']          
                                                                                                  
 concatenate_31 (Concatenate)   (None, 14, 14, 704)  0           ['concatenate_30[0][0]',         
                                                                  'conv2d_66[0][0]']              
                                                                                                  
 batch_normalization_67 (BatchN  (None, 14, 14, 704)  2816       ['concatenate_31[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_66 (Activation)     (None, 14, 14, 704)  0           ['batch_normalization_67[0][0]'] 
                                                                                                  
 conv2d_67 (Conv2D)             (None, 14, 14, 128)  90112       ['activation_66[0][0]']          
                                                                                                  
 batch_normalization_68 (BatchN  (None, 14, 14, 128)  512        ['conv2d_67[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_67 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_68[0][0]'] 
                                                                                                  
 conv2d_68 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_67[0][0]']          
                                                                                                  
 concatenate_32 (Concatenate)   (None, 14, 14, 736)  0           ['concatenate_31[0][0]',         
                                                                  'conv2d_68[0][0]']              
                                                                                                  
 batch_normalization_69 (BatchN  (None, 14, 14, 736)  2944       ['concatenate_32[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_68 (Activation)     (None, 14, 14, 736)  0           ['batch_normalization_69[0][0]'] 
                                                                                                  
 conv2d_69 (Conv2D)             (None, 14, 14, 128)  94208       ['activation_68[0][0]']          
                                                                                                  
 batch_normalization_70 (BatchN  (None, 14, 14, 128)  512        ['conv2d_69[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_69 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_70[0][0]'] 
                                                                                                  
 conv2d_70 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_69[0][0]']          
                                                                                                  
 concatenate_33 (Concatenate)   (None, 14, 14, 768)  0           ['concatenate_32[0][0]',         
                                                                  'conv2d_70[0][0]']              
                                                                                                  
 batch_normalization_71 (BatchN  (None, 14, 14, 768)  3072       ['concatenate_33[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_70 (Activation)     (None, 14, 14, 768)  0           ['batch_normalization_71[0][0]'] 
                                                                                                  
 conv2d_71 (Conv2D)             (None, 14, 14, 128)  98304       ['activation_70[0][0]']          
                                                                                                  
 batch_normalization_72 (BatchN  (None, 14, 14, 128)  512        ['conv2d_71[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_71 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_72[0][0]'] 
                                                                                                  
 conv2d_72 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_71[0][0]']          
                                                                                                  
 concatenate_34 (Concatenate)   (None, 14, 14, 800)  0           ['concatenate_33[0][0]',         
                                                                  'conv2d_72[0][0]']              
                                                                                                  
 batch_normalization_73 (BatchN  (None, 14, 14, 800)  3200       ['concatenate_34[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_72 (Activation)     (None, 14, 14, 800)  0           ['batch_normalization_73[0][0]'] 
                                                                                                  
 conv2d_73 (Conv2D)             (None, 14, 14, 128)  102400      ['activation_72[0][0]']          
                                                                                                  
 batch_normalization_74 (BatchN  (None, 14, 14, 128)  512        ['conv2d_73[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_73 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_74[0][0]'] 
                                                                                                  
 conv2d_74 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_73[0][0]']          
                                                                                                  
 concatenate_35 (Concatenate)   (None, 14, 14, 832)  0           ['concatenate_34[0][0]',         
                                                                  'conv2d_74[0][0]']              
                                                                                                  
 batch_normalization_75 (BatchN  (None, 14, 14, 832)  3328       ['concatenate_35[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_74 (Activation)     (None, 14, 14, 832)  0           ['batch_normalization_75[0][0]'] 
                                                                                                  
 conv2d_75 (Conv2D)             (None, 14, 14, 128)  106496      ['activation_74[0][0]']          
                                                                                                  
 batch_normalization_76 (BatchN  (None, 14, 14, 128)  512        ['conv2d_75[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_75 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_76[0][0]'] 
                                                                                                  
 conv2d_76 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_75[0][0]']          
                                                                                                  
 concatenate_36 (Concatenate)   (None, 14, 14, 864)  0           ['concatenate_35[0][0]',         
                                                                  'conv2d_76[0][0]']              
                                                                                                  
 batch_normalization_77 (BatchN  (None, 14, 14, 864)  3456       ['concatenate_36[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_76 (Activation)     (None, 14, 14, 864)  0           ['batch_normalization_77[0][0]'] 
                                                                                                  
 conv2d_77 (Conv2D)             (None, 14, 14, 128)  110592      ['activation_76[0][0]']          
                                                                                                  
 batch_normalization_78 (BatchN  (None, 14, 14, 128)  512        ['conv2d_77[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_77 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_78[0][0]'] 
                                                                                                  
 conv2d_78 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_77[0][0]']          
                                                                                                  
 concatenate_37 (Concatenate)   (None, 14, 14, 896)  0           ['concatenate_36[0][0]',         
                                                                  'conv2d_78[0][0]']              
                                                                                                  
 batch_normalization_79 (BatchN  (None, 14, 14, 896)  3584       ['concatenate_37[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_78 (Activation)     (None, 14, 14, 896)  0           ['batch_normalization_79[0][0]'] 
                                                                                                  
 conv2d_79 (Conv2D)             (None, 14, 14, 128)  114688      ['activation_78[0][0]']          
                                                                                                  
 batch_normalization_80 (BatchN  (None, 14, 14, 128)  512        ['conv2d_79[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_79 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_80[0][0]'] 
                                                                                                  
 conv2d_80 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_79[0][0]']          
                                                                                                  
 concatenate_38 (Concatenate)   (None, 14, 14, 928)  0           ['concatenate_37[0][0]',         
                                                                  'conv2d_80[0][0]']              
                                                                                                  
 batch_normalization_81 (BatchN  (None, 14, 14, 928)  3712       ['concatenate_38[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_80 (Activation)     (None, 14, 14, 928)  0           ['batch_normalization_81[0][0]'] 
                                                                                                  
 conv2d_81 (Conv2D)             (None, 14, 14, 128)  118784      ['activation_80[0][0]']          
                                                                                                  
 batch_normalization_82 (BatchN  (None, 14, 14, 128)  512        ['conv2d_81[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_81 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_82[0][0]'] 
                                                                                                  
 conv2d_82 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_81[0][0]']          
                                                                                                  
 concatenate_39 (Concatenate)   (None, 14, 14, 960)  0           ['concatenate_38[0][0]',         
                                                                  'conv2d_82[0][0]']              
                                                                                                  
 batch_normalization_83 (BatchN  (None, 14, 14, 960)  3840       ['concatenate_39[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_82 (Activation)     (None, 14, 14, 960)  0           ['batch_normalization_83[0][0]'] 
                                                                                                  
 conv2d_83 (Conv2D)             (None, 14, 14, 128)  122880      ['activation_82[0][0]']          
                                                                                                  
 batch_normalization_84 (BatchN  (None, 14, 14, 128)  512        ['conv2d_83[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_83 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_84[0][0]'] 
                                                                                                  
 conv2d_84 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_83[0][0]']          
                                                                                                  
 concatenate_40 (Concatenate)   (None, 14, 14, 992)  0           ['concatenate_39[0][0]',         
                                                                  'conv2d_84[0][0]']              
                                                                                                  
 batch_normalization_85 (BatchN  (None, 14, 14, 992)  3968       ['concatenate_40[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_84 (Activation)     (None, 14, 14, 992)  0           ['batch_normalization_85[0][0]'] 
                                                                                                  
 conv2d_85 (Conv2D)             (None, 14, 14, 128)  126976      ['activation_84[0][0]']          
                                                                                                  
 batch_normalization_86 (BatchN  (None, 14, 14, 128)  512        ['conv2d_85[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_85 (Activation)     (None, 14, 14, 128)  0           ['batch_normalization_86[0][0]'] 
                                                                                                  
 conv2d_86 (Conv2D)             (None, 14, 14, 32)   36864       ['activation_85[0][0]']          
                                                                                                  
 concatenate_41 (Concatenate)   (None, 14, 14, 1024  0           ['concatenate_40[0][0]',         
                                )                                 'conv2d_86[0][0]']              
                                                                                                  
 batch_normalization_87 (BatchN  (None, 14, 14, 1024  4096       ['concatenate_41[0][0]']         
 ormalization)                  )                                                                 
                                                                                                  
 activation_86 (Activation)     (None, 14, 14, 1024  0           ['batch_normalization_87[0][0]'] 
                                )                                                                 
                                                                                                  
 conv2d_87 (Conv2D)             (None, 14, 14, 512)  524288      ['activation_86[0][0]']          
                                                                                                  
 average_pooling2d_2 (AveragePo  (None, 7, 7, 512)   0           ['conv2d_87[0][0]']              
 oling2D)                                                                                         
                                                                                                  
 batch_normalization_88 (BatchN  (None, 7, 7, 512)   2048        ['average_pooling2d_2[0][0]']    
 ormalization)                                                                                    
                                                                                                  
 activation_87 (Activation)     (None, 7, 7, 512)    0           ['batch_normalization_88[0][0]'] 
                                                                                                  
 conv2d_88 (Conv2D)             (None, 7, 7, 128)    65536       ['activation_87[0][0]']          
                                                                                                  
 batch_normalization_89 (BatchN  (None, 7, 7, 128)   512         ['conv2d_88[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_88 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_89[0][0]'] 
                                                                                                  
 conv2d_89 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_88[0][0]']          
                                                                                                  
 concatenate_42 (Concatenate)   (None, 7, 7, 544)    0           ['average_pooling2d_2[0][0]',    
                                                                  'conv2d_89[0][0]']              
                                                                                                  
 batch_normalization_90 (BatchN  (None, 7, 7, 544)   2176        ['concatenate_42[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_89 (Activation)     (None, 7, 7, 544)    0           ['batch_normalization_90[0][0]'] 
                                                                                                  
 conv2d_90 (Conv2D)             (None, 7, 7, 128)    69632       ['activation_89[0][0]']          
                                                                                                  
 batch_normalization_91 (BatchN  (None, 7, 7, 128)   512         ['conv2d_90[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_90 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_91[0][0]'] 
                                                                                                  
 conv2d_91 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_90[0][0]']          
                                                                                                  
 concatenate_43 (Concatenate)   (None, 7, 7, 576)    0           ['concatenate_42[0][0]',         
                                                                  'conv2d_91[0][0]']              
                                                                                                  
 batch_normalization_92 (BatchN  (None, 7, 7, 576)   2304        ['concatenate_43[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_91 (Activation)     (None, 7, 7, 576)    0           ['batch_normalization_92[0][0]'] 
                                                                                                  
 conv2d_92 (Conv2D)             (None, 7, 7, 128)    73728       ['activation_91[0][0]']          
                                                                                                  
 batch_normalization_93 (BatchN  (None, 7, 7, 128)   512         ['conv2d_92[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_92 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_93[0][0]'] 
                                                                                                  
 conv2d_93 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_92[0][0]']          
                                                                                                  
 concatenate_44 (Concatenate)   (None, 7, 7, 608)    0           ['concatenate_43[0][0]',         
                                                                  'conv2d_93[0][0]']              
                                                                                                  
 batch_normalization_94 (BatchN  (None, 7, 7, 608)   2432        ['concatenate_44[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_93 (Activation)     (None, 7, 7, 608)    0           ['batch_normalization_94[0][0]'] 
                                                                                                  
 conv2d_94 (Conv2D)             (None, 7, 7, 128)    77824       ['activation_93[0][0]']          
                                                                                                  
 batch_normalization_95 (BatchN  (None, 7, 7, 128)   512         ['conv2d_94[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_94 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_95[0][0]'] 
                                                                                                  
 conv2d_95 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_94[0][0]']          
                                                                                                  
 concatenate_45 (Concatenate)   (None, 7, 7, 640)    0           ['concatenate_44[0][0]',         
                                                                  'conv2d_95[0][0]']              
                                                                                                  
 batch_normalization_96 (BatchN  (None, 7, 7, 640)   2560        ['concatenate_45[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_95 (Activation)     (None, 7, 7, 640)    0           ['batch_normalization_96[0][0]'] 
                                                                                                  
 conv2d_96 (Conv2D)             (None, 7, 7, 128)    81920       ['activation_95[0][0]']          
                                                                                                  
 batch_normalization_97 (BatchN  (None, 7, 7, 128)   512         ['conv2d_96[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_96 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_97[0][0]'] 
                                                                                                  
 conv2d_97 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_96[0][0]']          
                                                                                                  
 concatenate_46 (Concatenate)   (None, 7, 7, 672)    0           ['concatenate_45[0][0]',         
                                                                  'conv2d_97[0][0]']              
                                                                                                  
 batch_normalization_98 (BatchN  (None, 7, 7, 672)   2688        ['concatenate_46[0][0]']         
 ormalization)                                                                                    
                                                                                                  
 activation_97 (Activation)     (None, 7, 7, 672)    0           ['batch_normalization_98[0][0]'] 
                                                                                                  
 conv2d_98 (Conv2D)             (None, 7, 7, 128)    86016       ['activation_97[0][0]']          
                                                                                                  
 batch_normalization_99 (BatchN  (None, 7, 7, 128)   512         ['conv2d_98[0][0]']              
 ormalization)                                                                                    
                                                                                                  
 activation_98 (Activation)     (None, 7, 7, 128)    0           ['batch_normalization_99[0][0]'] 
                                                                                                  
 conv2d_99 (Conv2D)             (None, 7, 7, 32)     36864       ['activation_98[0][0]']          
                                                                                                  
 concatenate_47 (Concatenate)   (None, 7, 7, 704)    0           ['concatenate_46[0][0]',         
                                                                  'conv2d_99[0][0]']              
                                                                                                  
 batch_normalization_100 (Batch  (None, 7, 7, 704)   2816        ['concatenate_47[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_99 (Activation)     (None, 7, 7, 704)    0           ['batch_normalization_100[0][0]']
                                                                                                  
 conv2d_100 (Conv2D)            (None, 7, 7, 128)    90112       ['activation_99[0][0]']          
                                                                                                  
 batch_normalization_101 (Batch  (None, 7, 7, 128)   512         ['conv2d_100[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_100 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_101[0][0]']
                                                                                                  
 conv2d_101 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_100[0][0]']         
                                                                                                  
 concatenate_48 (Concatenate)   (None, 7, 7, 736)    0           ['concatenate_47[0][0]',         
                                                                  'conv2d_101[0][0]']             
                                                                                                  
 batch_normalization_102 (Batch  (None, 7, 7, 736)   2944        ['concatenate_48[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_101 (Activation)    (None, 7, 7, 736)    0           ['batch_normalization_102[0][0]']
                                                                                                  
 conv2d_102 (Conv2D)            (None, 7, 7, 128)    94208       ['activation_101[0][0]']         
                                                                                                  
 batch_normalization_103 (Batch  (None, 7, 7, 128)   512         ['conv2d_102[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_102 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_103[0][0]']
                                                                                                  
 conv2d_103 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_102[0][0]']         
                                                                                                  
 concatenate_49 (Concatenate)   (None, 7, 7, 768)    0           ['concatenate_48[0][0]',         
                                                                  'conv2d_103[0][0]']             
                                                                                                  
 batch_normalization_104 (Batch  (None, 7, 7, 768)   3072        ['concatenate_49[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_103 (Activation)    (None, 7, 7, 768)    0           ['batch_normalization_104[0][0]']
                                                                                                  
 conv2d_104 (Conv2D)            (None, 7, 7, 128)    98304       ['activation_103[0][0]']         
                                                                                                  
 batch_normalization_105 (Batch  (None, 7, 7, 128)   512         ['conv2d_104[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_104 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_105[0][0]']
                                                                                                  
 conv2d_105 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_104[0][0]']         
                                                                                                  
 concatenate_50 (Concatenate)   (None, 7, 7, 800)    0           ['concatenate_49[0][0]',         
                                                                  'conv2d_105[0][0]']             
                                                                                                  
 batch_normalization_106 (Batch  (None, 7, 7, 800)   3200        ['concatenate_50[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_105 (Activation)    (None, 7, 7, 800)    0           ['batch_normalization_106[0][0]']
                                                                                                  
 conv2d_106 (Conv2D)            (None, 7, 7, 128)    102400      ['activation_105[0][0]']         
                                                                                                  
 batch_normalization_107 (Batch  (None, 7, 7, 128)   512         ['conv2d_106[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_106 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_107[0][0]']
                                                                                                  
 conv2d_107 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_106[0][0]']         
                                                                                                  
 concatenate_51 (Concatenate)   (None, 7, 7, 832)    0           ['concatenate_50[0][0]',         
                                                                  'conv2d_107[0][0]']             
                                                                                                  
 batch_normalization_108 (Batch  (None, 7, 7, 832)   3328        ['concatenate_51[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_107 (Activation)    (None, 7, 7, 832)    0           ['batch_normalization_108[0][0]']
                                                                                                  
 conv2d_108 (Conv2D)            (None, 7, 7, 128)    106496      ['activation_107[0][0]']         
                                                                                                  
 batch_normalization_109 (Batch  (None, 7, 7, 128)   512         ['conv2d_108[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_108 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_109[0][0]']
                                                                                                  
 conv2d_109 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_108[0][0]']         
                                                                                                  
 concatenate_52 (Concatenate)   (None, 7, 7, 864)    0           ['concatenate_51[0][0]',         
                                                                  'conv2d_109[0][0]']             
                                                                                                  
 batch_normalization_110 (Batch  (None, 7, 7, 864)   3456        ['concatenate_52[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_109 (Activation)    (None, 7, 7, 864)    0           ['batch_normalization_110[0][0]']
                                                                                                  
 conv2d_110 (Conv2D)            (None, 7, 7, 128)    110592      ['activation_109[0][0]']         
                                                                                                  
 batch_normalization_111 (Batch  (None, 7, 7, 128)   512         ['conv2d_110[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_110 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_111[0][0]']
                                                                                                  
 conv2d_111 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_110[0][0]']         
                                                                                                  
 concatenate_53 (Concatenate)   (None, 7, 7, 896)    0           ['concatenate_52[0][0]',         
                                                                  'conv2d_111[0][0]']             
                                                                                                  
 batch_normalization_112 (Batch  (None, 7, 7, 896)   3584        ['concatenate_53[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_111 (Activation)    (None, 7, 7, 896)    0           ['batch_normalization_112[0][0]']
                                                                                                  
 conv2d_112 (Conv2D)            (None, 7, 7, 128)    114688      ['activation_111[0][0]']         
                                                                                                  
 batch_normalization_113 (Batch  (None, 7, 7, 128)   512         ['conv2d_112[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_112 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_113[0][0]']
                                                                                                  
 conv2d_113 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_112[0][0]']         
                                                                                                  
 concatenate_54 (Concatenate)   (None, 7, 7, 928)    0           ['concatenate_53[0][0]',         
                                                                  'conv2d_113[0][0]']             
                                                                                                  
 batch_normalization_114 (Batch  (None, 7, 7, 928)   3712        ['concatenate_54[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_113 (Activation)    (None, 7, 7, 928)    0           ['batch_normalization_114[0][0]']
                                                                                                  
 conv2d_114 (Conv2D)            (None, 7, 7, 128)    118784      ['activation_113[0][0]']         
                                                                                                  
 batch_normalization_115 (Batch  (None, 7, 7, 128)   512         ['conv2d_114[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_114 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_115[0][0]']
                                                                                                  
 conv2d_115 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_114[0][0]']         
                                                                                                  
 concatenate_55 (Concatenate)   (None, 7, 7, 960)    0           ['concatenate_54[0][0]',         
                                                                  'conv2d_115[0][0]']             
                                                                                                  
 batch_normalization_116 (Batch  (None, 7, 7, 960)   3840        ['concatenate_55[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_115 (Activation)    (None, 7, 7, 960)    0           ['batch_normalization_116[0][0]']
                                                                                                  
 conv2d_116 (Conv2D)            (None, 7, 7, 128)    122880      ['activation_115[0][0]']         
                                                                                                  
 batch_normalization_117 (Batch  (None, 7, 7, 128)   512         ['conv2d_116[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_116 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_117[0][0]']
                                                                                                  
 conv2d_117 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_116[0][0]']         
                                                                                                  
 concatenate_56 (Concatenate)   (None, 7, 7, 992)    0           ['concatenate_55[0][0]',         
                                                                  'conv2d_117[0][0]']             
                                                                                                  
 batch_normalization_118 (Batch  (None, 7, 7, 992)   3968        ['concatenate_56[0][0]']         
 Normalization)                                                                                   
                                                                                                  
 activation_117 (Activation)    (None, 7, 7, 992)    0           ['batch_normalization_118[0][0]']
                                                                                                  
 conv2d_118 (Conv2D)            (None, 7, 7, 128)    126976      ['activation_117[0][0]']         
                                                                                                  
 batch_normalization_119 (Batch  (None, 7, 7, 128)   512         ['conv2d_118[0][0]']             
 Normalization)                                                                                   
                                                                                                  
 activation_118 (Activation)    (None, 7, 7, 128)    0           ['batch_normalization_119[0][0]']
                                                                                                  
 conv2d_119 (Conv2D)            (None, 7, 7, 32)     36864       ['activation_118[0][0]']         
                                                                                                  
 concatenate_57 (Concatenate)   (None, 7, 7, 1024)   0           ['concatenate_56[0][0]',         
                                                                  'conv2d_119[0][0]']             
                                                                                                  
 global_average_pooling2d (Glob  (None, 1024)        0           ['concatenate_57[0][0]']         
 alAveragePooling2D)                                                                              
                                                                                                  
 dense (Dense)                  (None, 16)           16400       ['global_average_pooling2d[0][0]'
                                                                 ]                                
                                                                                                  
 activation_119 (Activation)    (None, 16)           0           ['dense[0][0]']                  
                                                                                                  
 dense_1 (Dense)                (None, 1024)         17408       ['activation_119[0][0]']         
                                                                                                  
 activation_120 (Activation)    (None, 1024)         0           ['dense_1[0][0]']                
                                                                                                  
 reshape (Reshape)              (None, 1, 1, 1024)   0           ['activation_120[0][0]']         
                                                                                                  
 tf.math.multiply (TFOpLambda)  (None, 7, 7, 1024)   0           ['concatenate_57[0][0]',         
                                                                  'reshape[0][0]']                
                                                                                                  
 batch_normalization_120 (Batch  (None, 7, 7, 1024)  4096        ['tf.math.multiply[0][0]']       
 Normalization)                                                                                   
                                                                                                  
 activation_121 (Activation)    (None, 7, 7, 1024)   0           ['batch_normalization_120[0][0]']
                                                                                                  
 global_average_pooling2d_1 (Gl  (None, 1024)        0           ['activation_121[0][0]']         
 obalAveragePooling2D)                                                                            
                                                                                                  
 dense_2 (Dense)                (None, 1000)         1025000     ['global_average_pooling2d_1[0][0
                                                                 ]']                              
                                                                                                  
==================================================================================================
Total params: 8,096,312
Trainable params: 8,012,664
Non-trainable params: 83,648
__________________________________________________________________________________________________

3.10.编译模型

python 复制代码
#设置初始学习率
initial_learning_rate = 1e-4
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
model.compile(optimizer=opt,
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

3.11.训练模型

python 复制代码
'''训练模型'''
epochs = 20
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

训练记录如下:

Epoch 1/20
54/54 [==============================] - ETA: 0s - loss: 4.1581 - accuracy: 0.5618
Epoch 1: val_accuracy improved from -inf to 0.33956, saving model to best_model.h5
54/54 [==============================] - 24s 236ms/step - loss: 4.1581 - accuracy: 0.5618 - val_loss: 6.6434 - val_accuracy: 0.3396
Epoch 2/20
54/54 [==============================] - ETA: 0s - loss: 1.3906 - accuracy: 0.7042
Epoch 2: val_accuracy improved from 0.33956 to 0.63944, saving model to best_model.h5
54/54 [==============================] - 12s 217ms/step - loss: 1.3906 - accuracy: 0.7042 - val_loss: 5.0245 - val_accuracy: 0.6394
Epoch 3/20
54/54 [==============================] - ETA: 0s - loss: 0.7259 - accuracy: 0.7392
Epoch 3: val_accuracy did not improve from 0.63944
54/54 [==============================] - 11s 211ms/step - loss: 0.7259 - accuracy: 0.7392 - val_loss: 2.8552 - val_accuracy: 0.5729
Epoch 4/20
54/54 [==============================] - ETA: 0s - loss: 0.5109 - accuracy: 0.7940
Epoch 4: val_accuracy did not improve from 0.63944
54/54 [==============================] - 11s 211ms/step - loss: 0.5109 - accuracy: 0.7940 - val_loss: 1.6427 - val_accuracy: 0.6336
Epoch 5/20
54/54 [==============================] - ETA: 0s - loss: 0.3891 - accuracy: 0.8431
Epoch 5: val_accuracy improved from 0.63944 to 0.69137, saving model to best_model.h5
54/54 [==============================] - 12s 218ms/step - loss: 0.3891 - accuracy: 0.8431 - val_loss: 0.9914 - val_accuracy: 0.6914
Epoch 6/20
54/54 [==============================] - ETA: 0s - loss: 0.3434 - accuracy: 0.8635
Epoch 6: val_accuracy did not improve from 0.69137
54/54 [==============================] - 11s 213ms/step - loss: 0.3434 - accuracy: 0.8635 - val_loss: 0.7353 - val_accuracy: 0.6826
Epoch 7/20
54/54 [==============================] - ETA: 0s - loss: 0.2720 - accuracy: 0.8950
Epoch 7: val_accuracy did not improve from 0.69137
54/54 [==============================] - 11s 213ms/step - loss: 0.2720 - accuracy: 0.8950 - val_loss: 0.9839 - val_accuracy: 0.6120
Epoch 8/20
54/54 [==============================] - ETA: 0s - loss: 0.2083 - accuracy: 0.9277
Epoch 8: val_accuracy improved from 0.69137 to 0.74504, saving model to best_model.h5
54/54 [==============================] - 12s 218ms/step - loss: 0.2083 - accuracy: 0.9277 - val_loss: 0.8169 - val_accuracy: 0.7450
Epoch 9/20
54/54 [==============================] - ETA: 0s - loss: 0.2032 - accuracy: 0.9247
Epoch 9: val_accuracy improved from 0.74504 to 0.80980, saving model to best_model.h5
54/54 [==============================] - 12s 217ms/step - loss: 0.2032 - accuracy: 0.9247 - val_loss: 0.4398 - val_accuracy: 0.8098
Epoch 10/20
54/54 [==============================] - ETA: 0s - loss: 0.1558 - accuracy: 0.9411
Epoch 10: val_accuracy did not improve from 0.80980
54/54 [==============================] - 11s 212ms/step - loss: 0.1558 - accuracy: 0.9411 - val_loss: 0.6900 - val_accuracy: 0.7853
Epoch 11/20
54/54 [==============================] - ETA: 0s - loss: 0.1223 - accuracy: 0.9568
Epoch 11: val_accuracy did not improve from 0.80980
54/54 [==============================] - 11s 213ms/step - loss: 0.1223 - accuracy: 0.9568 - val_loss: 0.7019 - val_accuracy: 0.7433
Epoch 12/20
54/54 [==============================] - ETA: 0s - loss: 0.0909 - accuracy: 0.9673
Epoch 12: val_accuracy improved from 0.80980 to 0.82205, saving model to best_model.h5
54/54 [==============================] - 12s 218ms/step - loss: 0.0909 - accuracy: 0.9673 - val_loss: 0.5862 - val_accuracy: 0.8221
Epoch 13/20
54/54 [==============================] - ETA: 0s - loss: 0.1773 - accuracy: 0.9288
Epoch 13: val_accuracy did not improve from 0.82205
54/54 [==============================] - 11s 212ms/step - loss: 0.1773 - accuracy: 0.9288 - val_loss: 0.7781 - val_accuracy: 0.7905
Epoch 14/20
54/54 [==============================] - ETA: 0s - loss: 0.1375 - accuracy: 0.9481
Epoch 14: val_accuracy improved from 0.82205 to 0.85998, saving model to best_model.h5
54/54 [==============================] - 12s 218ms/step - loss: 0.1375 - accuracy: 0.9481 - val_loss: 0.3867 - val_accuracy: 0.8600
Epoch 15/20
54/54 [==============================] - ETA: 0s - loss: 0.0727 - accuracy: 0.9755
Epoch 15: val_accuracy improved from 0.85998 to 0.91482, saving model to best_model.h5
54/54 [==============================] - 12s 224ms/step - loss: 0.0727 - accuracy: 0.9755 - val_loss: 0.2605 - val_accuracy: 0.9148
Epoch 16/20
54/54 [==============================] - ETA: 0s - loss: 0.0412 - accuracy: 0.9912
Epoch 16: val_accuracy improved from 0.91482 to 0.91890, saving model to best_model.h5
54/54 [==============================] - 12s 220ms/step - loss: 0.0412 - accuracy: 0.9912 - val_loss: 0.1958 - val_accuracy: 0.9189
Epoch 17/20
54/54 [==============================] - ETA: 0s - loss: 0.0466 - accuracy: 0.9848
Epoch 17: val_accuracy did not improve from 0.91890
54/54 [==============================] - 11s 213ms/step - loss: 0.0466 - accuracy: 0.9848 - val_loss: 0.2973 - val_accuracy: 0.8991
Epoch 18/20
54/54 [==============================] - ETA: 0s - loss: 0.0786 - accuracy: 0.9697
Epoch 18: val_accuracy did not improve from 0.91890
54/54 [==============================] - 11s 213ms/step - loss: 0.0786 - accuracy: 0.9697 - val_loss: 1.5921 - val_accuracy: 0.7170
Epoch 19/20
54/54 [==============================] - ETA: 0s - loss: 0.0757 - accuracy: 0.9778
Epoch 19: val_accuracy improved from 0.91890 to 0.92065, saving model to best_model.h5
54/54 [==============================] - 12s 218ms/step - loss: 0.0757 - accuracy: 0.9778 - val_loss: 0.2539 - val_accuracy: 0.9207
Epoch 20/20
54/54 [==============================] - ETA: 0s - loss: 0.1000 - accuracy: 0.9656
Epoch 20: val_accuracy did not improve from 0.92065
54/54 [==============================] - 11s 213ms/step - loss: 0.1000 - accuracy: 0.9656 - val_loss: 1.0522 - val_accuracy: 0.6914

3.12.模型评估

python 复制代码
'''模型评估'''
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(len(loss))
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

3.13.图像预测

python 复制代码
'''指定图片进行预测'''
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("预测结果展示", fontsize=10)
for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i + 1)

        # 显示图片
        plt.imshow(images[i].numpy().astype("uint8"))

        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0)

        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)], fontsize=10)

        plt.axis("off")
plt.show()

4 知识点详解

4.1 SE-Net算法详解

SE-Net是ImageNet 2017 (lmageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。已经有很多工作在空间维度上来提升网络的性能,如 nception 等,而 SENet 将关注点放在了特征通道之间的关系上。其具体策略为: 通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征,这又叫做"特征重标定"策略。

SE模块的灵活性在于它可以直接应用现有的网络结构中。以Inception 和 ResNet 为例,我们只需要在Inception 模块或 Residual 模块后添加一个SE 模块即可。具体如下图所示:

具体的SE模块如上图所示。给定一个输入 x x x,其特征通道数为 c 1 c_1 c1,通过一系列卷积等变换 F t r F_{tr} Ftr后得到一个特征通道数为 c 2 c_2 c2的特征。与传统的卷积神经网络不同,我们需要通过下面三个操作来重标定前面得到的特征。

(1)Squeeze:顺着空间维度来进行特征压缩,将一个通道中整个空间特征编码为一个全局特征,这个实数某种程度上具有全局的感受野,并且输出的通道数和输入的特征通道数相等,例如将形状为(1, 32, 32, 10)的feature map压缩成(1, 1, 1, 10)。此操作通常采用global average pooling来实现。

(2)Excitation:得到全局描述特征后,通过Excitation来获取特征通道之间的关系,它是一个类似于循环神经网络中门的机制。
s = F e x ( z , W ) = σ ( g ( z , W ) ) = σ ( W 2 R e L U ( W 1 ) ) s=F_{ex}(z,W)=\sigma(g(z,W))=\sigma(W_2ReLU(W_1)) s=Fex(z,W)=σ(g(z,W))=σ(W2ReLU(W1))

这里采用包含两个全连接层的bottleneck结构,即中间小两头大的结构:其中第一个全连接层起到降维的作用,并通过ReLU激活,第二个全连接层用来将其恢复至原始的维度。进行Excitation操作的最终目的是为每个特征通道生成权重,即学习到各个通道的激活值(sigmoid激活,值在0~1之间)。

(3)Scale:我们将Excitation的输出权重看做是经过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定,从而使得模型对各个通道的特征更具有辨别能力,这类似于attention机制。

该过程可以简单的概括为:

从框架图中能看出就是在Residual后添加一个SE过程,

1、首先建立一个Global pooling 获取全局视野

2、两次全连接FC:第一次完成的是降维作用,一次完成的是升维作用恢复到原始维度

(一降一升,维度不变,因此可以随意加到任何过程之后)

3、通过sigmoid激活,权重参数在0~1之间

4、最后Scale操作把权重参数加回原始维度的Residual (Residual * Weight)

SE模块很容易嵌入到其他网络中,为了验证SE模块的作用,在其它流行网络如ResNet和Inception中引入SE模块,测试其在ImageNet上的效果,如下表所示

首先看一下网络的深度对 SE 的影响。上表分别展示了 ResNet-50、ResNet-101、ResNet-152 和嵌入 SE 模型的结果。第一栏 Original 是原作者实现的结果,为了进行公平的比较,重新进行了实验得到 Our re-implementation 的结果。最后一栏 SE-module 是指嵌入了 SE 模块的结果,它的训练参数和第二栏 Our re-implementation 一致。括号中的红色数值是指相对于 Our re-implementation 的精度提升的幅值。

从上表可以看出,SE-ResNets 在各种深度上都远远超过了其对应的没有SE的结构版本的精度,这说明无论网络的深度如何,SE模块都能够给网络带来性能上的增益。值得一提的是,SE-ResNet-50 可以达到和ResNet-101 一样的精度;更甚,SE-ResNet-101 远远地超过了更深的ResNet-152。

上图展示了ResNet-50 和 ResNet-152 以及它们对应的嵌入SE模块的网络在ImageNet上的训练过程,可以明显地看出加入了SE模块的网络收敛到更低的错误率上。

4 总结

普通的卷积实际上是对局部区域进行的特征融合,因此其感受野不大,若设计出更多的通道特征来增加这个,不可避免的将导致计算量大大的增加。而SENet网络的创新点在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。

简而言之,在每个channel上将整个特征图浓缩成一个值,即在Squeeze步骤中通过averagepooling的操作计算每个通道的特征,此时每个通道只有一个特征,即size为c;然后在Excitation步骤中,通过降维+ReLU+升维+sigmoid操作,建模出特征通道之间的相互依赖关系,计算出每个特征通道的重要程度,此时size仍为c,c中的每个元素代表着相应通道的重要程度,越重要则越接近1;最后在Scale步骤中,将之前的操作得出的特征图进行scale操作,而scale的权重就是刚刚计算出的Excitation特征(size为c)通过reshape后(size为11c)的矩阵,即对各个通道的特征进行相应的放大或缩小。

相关推荐
985小水博一枚呀3 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
985小水博一枚呀7 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
半盏茶香21 分钟前
【C语言】分支和循环详解(下)猜数字游戏
c语言·开发语言·c++·算法·游戏
徐子童26 分钟前
双指针算法习题解答
算法
想要打 Acm 的小周同学呀35 分钟前
LRU缓存算法
java·算法·缓存
劲夫学编程2 小时前
leetcode:杨辉三角
算法·leetcode·职场和发展
毕竟秋山澪2 小时前
孤岛的总面积(Dfs C#
算法·深度优先
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
励志成为嵌入式工程师6 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim