优化器(一)torch.optim.SGD-随机梯度下降法

torch.optim.SGD-随机梯度下降法

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        result_loss = loss(outputs, targets)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        running_loss += result_loss
    print(running_loss)
相关推荐
万行25 分钟前
机器学习&第四章支持向量机
人工智能·机器学习·支持向量机
幻云201029 分钟前
Next.js之道:从入门到精通
人工智能·python
予枫的编程笔记34 分钟前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy36 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance36 分钟前
机器学习的一些基本知识
人工智能·机器学习
l1t40 分钟前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
12344521 小时前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒1 小时前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端
taihexuelang1 小时前
大模型部署
人工智能·docker·容器
轻竹办公PPT1 小时前
2025实测!AI生成PPT工具全总结
人工智能·python·powerpoint