优化器(一)torch.optim.SGD-随机梯度下降法

torch.optim.SGD-随机梯度下降法

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        result_loss = loss(outputs, targets)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        running_loss += result_loss
    print(running_loss)
相关推荐
大千AI助手1 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光2 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan2 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎3 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农3 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农3 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机3 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶3 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8243 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js