优化器(一)torch.optim.SGD-随机梯度下降法

torch.optim.SGD-随机梯度下降法

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        result_loss = loss(outputs, targets)
        optim.zero_grad()
        result_loss.backward()
        optim.step()
        running_loss += result_loss
    print(running_loss)
相关推荐
云天徽上8 分钟前
【数据可视化-41】15年NVDA, AAPL, MSFT, GOOGL & AMZ股票数据集可视化分析
人工智能·机器学习·信息可视化·数据挖掘·数据分析
EasyDSS9 分钟前
EasyCVR视频汇聚平台助力大型生产监控项目摄像机选型与应用
网络·人工智能·音视频
qq_4369621816 分钟前
奥威BI+AI数据分析解决方案
人工智能·数据挖掘·数据分析·ai数据分析
freexyn23 分钟前
Matlab自学笔记五十二:变量名称:检查变量名称是否存在或是否与关键字冲突
人工智能·笔记·算法·matlab
roc-ever26 分钟前
用Python做有趣的AI项目5:AI 画画机器人(图像风格迁移)
人工智能·python·深度学习
说私域28 分钟前
从大众传媒到数字生态:开源AI智能名片链动2+1模式S2B2C商城小程序驱动的营销革命
人工智能·小程序·开源·零售
群联云防护小杜29 分钟前
云服务器被黑客攻击应急响应与加固指南(上)
运维·服务器·人工智能·tcp/ip·自动化·压力测试
九亿AI算法优化工作室&1 小时前
结合大语言模型的机械臂抓取操作学习
人工智能·学习·语言模型·自然语言处理
kaamelai1 小时前
Kaamel视角下的MCP安全最佳实践
大数据·人工智能·安全
我要学脑机1 小时前
基于常微分方程的神经网络(Neural ODE)
人工智能·深度学习·神经网络