OpenCV-20卷积操作

一、什么是图像卷积

图像卷积就是卷积在图像上按照滑动遍历像素时不断的相乘求和的过程。

绿色为图片, 黄色为卷积核, 粉色为最终得到的卷积特征。

二、步长

步长就是卷积核在图像上移动的步幅,每次移动一个方格则步幅为1。且一般为1。

若步长越大,则 中间的像素点得不到扫描,最终的图像会更小一点。

三、padding

如果需要保持图片大小不变,我们需要在图片周围填充0.

padding指的就是填充0的层数。

我们可以通过公式计算需要填充的0的圈数。

输入体积大小:H1*W1*D1(分别为高度、宽度和通道数)

四个超参数:Filter数量K; (卷积核数量)

Filter大小F; (一般为基数 3*3, 5*5, 7*7)

步长S;

零填充大小P;

输出体积大小H2 * W2 * D2

H2 = (H1 - F + 2P) / S +1

W2 = (W1 - F + 2P) / S +1

D2 = K

如果要保持卷积之后的图片大小不变,可以得到等式:(N+2P-F+1) = N

从而推导出:P = (F-1) / 2 (默认S=1)

四、卷积核的大小

图片卷积中,卷积核一般为奇数,比如3*3, 5*5, 7*7,原因如下:

1)根据上面padding的公式,如果要保持图片大小不变,采用偶数卷积核的话,比如4*4,将会出现填充1.5圈0的情况。

2)奇数维度的过滤器由中心,便于指出过滤器的位置,即OpenCV卷积中的锚点。

五、卷积案例

使用API---fifter2D(src, ddepth, kernel [, dst [,anchor[, delta[, borderType]]])

-- ddepth是卷积之后图片的位深,即卷积之后的图片的数据类型,一般为-1,表示与原图一致。

-- kernel 是卷积核的大小,用元组或者ndarray表示,要求数据类型必须为float型。

-- anchor 锚点,即卷积核的中心点,是可选参数,默认是(-1, -1)

-- delta可选参数,表示卷积之后额外加的一个值,相当于线性方程中的偏差,默认为0。

-- borderType 边界类型,一般不设置。

网络上有许多图片处理的卷积核

示例代码如下:

复制代码
import cv2
import numpy as np

dog = cv2.imread("dog.png")

# 卷积核
# kernel = np.ones((5, 5),np.float32) / 25   # 相当于所有点/25取平均值,图片变得模糊
# 尝试其他的卷积核
kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])

# 卷积操作
new_dog = cv2.filter2D(dog, -1, kernel)
cv2.imshow("dog", dog)
cv2.imshow("new_dog", new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

相关推荐
佩奇的技术笔记6 分钟前
Python入门手册:异常处理
python
大写-凌祁15 分钟前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
Unpredictable22220 分钟前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
柯南二号26 分钟前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM27 分钟前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
爱喝喜茶爱吃烤冷面的小黑黑38 分钟前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
IT_陈寒43 分钟前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin43 分钟前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
盛寒1 小时前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_177297220691 小时前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网