OpenCV-20卷积操作

一、什么是图像卷积

图像卷积就是卷积在图像上按照滑动遍历像素时不断的相乘求和的过程。

绿色为图片, 黄色为卷积核, 粉色为最终得到的卷积特征。

二、步长

步长就是卷积核在图像上移动的步幅,每次移动一个方格则步幅为1。且一般为1。

若步长越大,则 中间的像素点得不到扫描,最终的图像会更小一点。

三、padding

如果需要保持图片大小不变,我们需要在图片周围填充0.

padding指的就是填充0的层数。

我们可以通过公式计算需要填充的0的圈数。

输入体积大小:H1*W1*D1(分别为高度、宽度和通道数)

四个超参数:Filter数量K; (卷积核数量)

Filter大小F; (一般为基数 3*3, 5*5, 7*7)

步长S;

零填充大小P;

输出体积大小H2 * W2 * D2

H2 = (H1 - F + 2P) / S +1

W2 = (W1 - F + 2P) / S +1

D2 = K

如果要保持卷积之后的图片大小不变,可以得到等式:(N+2P-F+1) = N

从而推导出:P = (F-1) / 2 (默认S=1)

四、卷积核的大小

图片卷积中,卷积核一般为奇数,比如3*3, 5*5, 7*7,原因如下:

1)根据上面padding的公式,如果要保持图片大小不变,采用偶数卷积核的话,比如4*4,将会出现填充1.5圈0的情况。

2)奇数维度的过滤器由中心,便于指出过滤器的位置,即OpenCV卷积中的锚点。

五、卷积案例

使用API---fifter2D(src, ddepth, kernel [, dst [,anchor[, delta[, borderType]]])

-- ddepth是卷积之后图片的位深,即卷积之后的图片的数据类型,一般为-1,表示与原图一致。

-- kernel 是卷积核的大小,用元组或者ndarray表示,要求数据类型必须为float型。

-- anchor 锚点,即卷积核的中心点,是可选参数,默认是(-1, -1)

-- delta可选参数,表示卷积之后额外加的一个值,相当于线性方程中的偏差,默认为0。

-- borderType 边界类型,一般不设置。

网络上有许多图片处理的卷积核

示例代码如下:

复制代码
import cv2
import numpy as np

dog = cv2.imread("dog.png")

# 卷积核
# kernel = np.ones((5, 5),np.float32) / 25   # 相当于所有点/25取平均值,图片变得模糊
# 尝试其他的卷积核
kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])

# 卷积操作
new_dog = cv2.filter2D(dog, -1, kernel)
cv2.imshow("dog", dog)
cv2.imshow("new_dog", new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

相关推荐
Jay_Franklin1 小时前
SRIM通过python计算dap
开发语言·python
是一个Bug1 小时前
Java基础50道经典面试题(四)
java·windows·python
吴佳浩1 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI1 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
liliangcsdn2 小时前
python下载并转存http文件链接的示例
开发语言·python
老蒋新思维2 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术2 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20232 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud2 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
大、男人2 小时前
python之Starlette
python·uvicorn