本地远程实时获取无人机采集视频图像(天空端 + jetson nano + 检测分割 + 回传地面端显示)

无线图传设备介绍

2、jetson nano天空端数据采集+检测+保存

3、本地回传显示

1、无线图传设备介绍

由于本设计考虑将无人机得到检测结果实时回传给地面站显示,因此需要考虑一个远程无线通信设备进行传输。本设计采用思翼HM30图传设备。通过无线图传的wifi将天空端的桌面远程发送回地面站,地面站接收采用vnc viewer(jetson nano 开启vnc viewer功能 参考链接)

需要进行改造的地方是将网线和天空端的video传输线进行链接,改造图片接线如下:

复制代码
               天空端线序和网线线序的顺序对应关系如图所示

网线改造如下:

2、jetson nano天空端数据采集+检测+保存

无人机上挂载一个jetson nano用于图像采集和实时处理图像,本开发主要是用来做河流分割

将分割的结果保存在jetson nano本地,效果如下:

3、本地回传

1)jetson nano上进行网络配置:

编辑网络连接,更改ipv4地址为自动,等待一会儿即可打开终端输入ifconfig查看网络地址,以太网0接口,eth0。有时候自动连接会失败,那就改为手动,IP地址设置192.168.144.106。

2)将地面端和天空端进行对频,地面端找到bing,连续按下天空端对频键,等待一会儿,地面端和天空端都显示绿灯即为链接成功

3)地面端设置为VideoMode:Inter Wifi

4)采用wifi与电脑端链接

电脑端找到如下siyi的wifi账号,密码:12345678链接上等待一会儿出现如下效果,证明链接成功

5)电脑端采用vnc Viewer 打开 jetson nano的IP地址:192.168.144.106输入密码,即可登入jetson nano的远程界面

总结:

采用SIYI的HM30的好处是省略了本地和远程网络通信开发,弊端就是需要有大量的资金投入,而且在实验过程中也存在卡顿问题

相关推荐
徽4401 天前
YOLOv5植物模型开发综述
人工智能·目标检测·计算机视觉
点PY1 天前
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection论文精读
人工智能·目标检测·3d
qunshankeji1 天前
战场目标检测:Faster R-CNN与RegNetX-800MF融合实现建筑物人员坦克车辆识别_2
目标检测·r语言·cnn
Valueyou242 天前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
AI浩2 天前
Mamba YOLO: 基于状态空间模型的目标检测简单基线
人工智能·yolo·目标检测
AI棒棒牛2 天前
SCI精读:基于计算机视觉改进光伏热点和积尘检测:基于现场航拍图像的YOLO模型系统比较
yolo·目标检测·计算机视觉·目标跟踪·sci
知忆_IS2 天前
【问题解决】Label Studio上传文件数量超限解决方案
python·目标检测·label studio
王哈哈^_^3 天前
【完整源码+数据集】车牌数据集,yolov8车牌检测数据集 7811 张,汽车车牌识别数据集,智慧交通汽车车牌识别系统实战教程
人工智能·深度学习·yolo·目标检测·计算机视觉·毕业设计·智慧城市
王哈哈^_^3 天前
【完整源码+数据集】课堂行为数据集,yolo课堂行为检测数据集 2090 张,学生课堂行为识别数据集,目标检测课堂行为识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
星光一影4 天前
SpringBoot+Vue3无人机AI巡检系统
人工智能·spring boot·websocket·mysql·intellij-idea·mybatis·无人机