C# Open Vocabulary Object Detection 部署开放域目标检测

目录

介绍

效果

模型信息

owlvit-image.onnx

owlvit-post.onnx

owlvit-text.onnx

项目

代码

Form1.cs

OWLVIT.cs

下载


C# Open Vocabulary Object Detection 部署开放域目标检测

介绍

训练源码地址:https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

效果

模型信息

owlvit-image.onnx

Inputs


name:pixel_values

tensor:Float[1, 3, 768, 768]


Outputs


name:image_embeds

tensor:Float[1, 24, 24, 768]

name:pred_boxes

tensor:Float[1, 576, 4]


owlvit-post.onnx

Inputs


name:image_embeds

tensor:Float[1, 24, 24, 768]

name:/owlvit/Div_output_0

tensor:Float[1, 512]

name:input_ids

tensor:Int64[1, 16]


Outputs


name:logits

tensor:Float[-1, 576, 1]


owlvit-text.onnx

Inputs


name:input_ids

tensor:Int64[1, 16]

name:attention_mask

tensor:Int64[1, 16]


Outputs


name:text_embeds

tensor:Float[1, 1, 512]


项目

代码

Form1.cs

using OpenCvSharp;

using System;

using System.Collections.Generic;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Onnx_Demo

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

OWLVIT owlvit = new OWLVIT("model/owlvit-image.onnx", "model/owlvit-text.onnx", "model/owlvit-post.onnx", "model/vocab.txt");

string image_path = "";

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

StringBuilder sb = new StringBuilder();

Mat image;

Mat result_image;

private void button2_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

pictureBox2.Image = null;

txtInfo.Text = "";

image_path = ofd.FileName;

pictureBox2.Image = new Bitmap(image_path);

image = new Mat(image_path);

}

private void button3_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

if (String.IsNullOrEmpty(txt_input_text.Text))

{

return;

}

pictureBox1.Image = null;

txtInfo.Text = "检测中,请稍等......";

button3.Enabled=false;

if (pictureBox1.Image!=null)

{

pictureBox1.Image.Dispose();

pictureBox1.Image = null;

}

Application.DoEvents();

List<string> texts = txt_input_text.Text.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries).ToList();

owlvit.encode_texts(texts);

List<BoxInfo> objects = owlvit.detect(image, texts);

result_image = image.Clone();

sb.Clear();

for (int i = 0; i < objects.Count; i++)

{

Cv2.Rectangle(result_image, objects[i].box, new Scalar(0, 0, 255), 2);

Cv2.PutText(result_image, objects[i].text + " " + objects[i].prob.ToString("F2"), new OpenCvSharp.Point(objects[i].box.X, objects[i].box.Y), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2); ;

sb.AppendLine(objects[i].text + " " + objects[i].prob.ToString("F2"));

}

pictureBox1.Image = new Bitmap(result_image.ToMemoryStream());

button3.Enabled = true;

txtInfo.Text = sb.ToString();

}

private void Form1_Load(object sender, EventArgs e)

{

image_path = "test_img/2.jpg";

pictureBox2.Image = new Bitmap(image_path);

image = new Mat(image_path);

owlvit.encode_image(image);

}

}

}

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        OWLVIT owlvit = new OWLVIT("model/owlvit-image.onnx", "model/owlvit-text.onnx", "model/owlvit-post.onnx", "model/vocab.txt");

        string image_path = "";
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        StringBuilder sb = new StringBuilder();

        Mat image;
        Mat result_image;

        private void button2_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            txtInfo.Text = "";

            image_path = ofd.FileName;
            pictureBox2.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void button3_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            if (String.IsNullOrEmpty(txt_input_text.Text))
            {
                return;
            }

            pictureBox1.Image = null;
            txtInfo.Text = "检测中,请稍等......";
            button3.Enabled=false;
            if (pictureBox1.Image!=null)
            {
                pictureBox1.Image.Dispose();
                pictureBox1.Image = null;   
            }
            Application.DoEvents();

            List<string> texts = txt_input_text.Text.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries).ToList();

            owlvit.encode_texts(texts);

            List<BoxInfo> objects = owlvit.detect(image, texts);

            result_image = image.Clone();
            sb.Clear();
            for (int i = 0; i < objects.Count; i++)
            {
                Cv2.Rectangle(result_image, objects[i].box, new Scalar(0, 0, 255), 2);
                Cv2.PutText(result_image, objects[i].text + " " + objects[i].prob.ToString("F2"), new OpenCvSharp.Point(objects[i].box.X, objects[i].box.Y), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2); ;
                sb.AppendLine(objects[i].text + " " + objects[i].prob.ToString("F2"));
            }
            pictureBox1.Image = new Bitmap(result_image.ToMemoryStream());

            button3.Enabled = true;
            txtInfo.Text = sb.ToString();

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test_img/2.jpg";
            pictureBox2.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            owlvit.encode_image(image);
        }
    }
}

OWLVIT.cs

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Linq;

namespace Onnx_Demo
{
    public class OWLVIT
    {
        float bbox_threshold = 0.02f;

        int inpWidth = 768;
        int inpHeight = 768;

        float[] mean = new float[] { 0.48145466f, 0.4578275f, 0.40821073f };
        float[] std = new float[] { 0.26862954f, 0.26130258f, 0.27577711f };

        Net net;
        float[] image_features_input;

        SessionOptions options;
        InferenceSession onnx_session;

        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;

        TokenizerBase tokenizer;

        SessionOptions options_transformer;
        InferenceSession onnx_session_transformer;

        float[] image_features;

        List<long[]> input_ids = new List<long[]>();
        List<float[]> text_features = new List<float[]>();

        long[] attention_mask;

        int len_image_feature = 24 * 24 * 768;
        int cnt_pred_boxes = 576;
        int len_text_token = 16;
        int context_length = 52;
        int len_text_feature = 512;
        int[] image_features_shape = { 1, 24, 24, 768 };
        int[] text_features_shape = { 1, 512 };

        public int imgnum = 0;
        public List<string> imglist = new List<string>();

        List<Rect2f> pred_boxes = new List<Rect2f>();

        public OWLVIT(string image_modelpath, string text_modelpath, string decoder_model_path, string vocab_path)
        {
            net = CvDnn.ReadNetFromOnnx(image_modelpath);

            input_container = new List<NamedOnnxValue>();

            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);
            onnx_session = new InferenceSession(text_modelpath, options);

            options_transformer = new SessionOptions();
            options_transformer.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options_transformer.AppendExecutionProvider_CPU(0);
            onnx_session_transformer = new InferenceSession(decoder_model_path, options);

            load_tokenizer(vocab_path);

        }

        void load_tokenizer(string vocab_path)
        {
            tokenizer = new TokenizerClip();
            tokenizer.load_tokenize(vocab_path);
        }

        Mat normalize_(Mat src)
        {
            Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);
            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);
            }
            Cv2.Merge(bgr, src);
            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }
            return src;
        }

        float sigmoid(float x)
        {
            return (float)(1.0f / (1.0f + Math.Exp(-x)));
        }

        public unsafe void encode_image(Mat srcimg)
        {
            pred_boxes.Clear();
            Mat temp_image = new Mat();
            Cv2.Resize(srcimg, temp_image, new Size(inpWidth, inpHeight));
            Mat normalized_mat = normalize_(temp_image);

            Mat blob = CvDnn.BlobFromImage(normalized_mat);
            net.SetInput(blob);
            //模型推理,读取推理结果
            Mat[] outs = new Mat[2] { new Mat(), new Mat() };
            string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();
            net.Forward(outs, outBlobNames);

            float* ptr_feat = (float*)outs[0].Data;

            image_features = new float[len_image_feature];

            for (int i = 0; i < len_image_feature; i++)
            {
                image_features[i] = ptr_feat[i];
            }

            float* ptr_box = (float*)outs[1].Data;
            Rect2f temp;
            for (int i = 0; i < cnt_pred_boxes; i++)
            {
                float xc = ptr_box[i * 4 + 0] * inpWidth;
                float yc = ptr_box[i * 4 + 1] * inpHeight;

                temp = new Rect2f();

                temp.Width = ptr_box[i * 4 + 2] * inpWidth;
                temp.Height = ptr_box[i * 4 + 3] * inpHeight;
                temp.X = (float)(xc - temp.Width * 0.5);
                temp.Y = (float)(yc - temp.Height * 0.5);

                pred_boxes.Add(temp);
            }
        }

        public unsafe void encode_texts(List<string> texts)
        {
            List<List<int>> text_token = new List<List<int>>(texts.Count);
            for (int i = 0; i < texts.Count; i++)
            {
                text_token.Add(new List<int>());
            }

            text_features.Clear();
            input_ids.Clear();

            for (int i = 0; i < texts.Count; i++)
            {
                tokenizer.encode_text(texts[i], text_token[i]);

                int len_ids = text_token[i].Count;

                long[] temp_ids = new long[len_text_token];
                attention_mask = new long[len_text_token];

                for (int j = 0; j < len_text_token; j++)
                {
                    if (j < len_ids)
                    {
                        temp_ids[j] = text_token[i][j];
                        attention_mask[j] = 1;
                    }
                    else
                    {
                        temp_ids[j] = 0;
                        attention_mask[j] = 0;
                    }
                }
                input_ids.Add(temp_ids);
                input_container.Clear();

                Tensor<long> input_tensor = new DenseTensor<long>(input_ids[i], new[] { 1, len_text_token });
                Tensor<long> input_tensor_mask = new DenseTensor<long>(attention_mask, new[] { 1, attention_mask.Length });

                input_container.Add(NamedOnnxValue.CreateFromTensor("input_ids", input_tensor));
                input_container.Add(NamedOnnxValue.CreateFromTensor("attention_mask", input_tensor));

                result_infer = onnx_session.Run(input_container);

                results_onnxvalue = result_infer.ToArray();

                result_tensors = results_onnxvalue[0].AsTensor<float>();

                float[] temp_text_features = results_onnxvalue[0].AsTensor<float>().ToArray();

                text_features.Add(temp_text_features);

            }
        }

        List<float> decode(float[] input_image_feature, float[] input_text_feature, long[] input_id)
        {
            input_container.Clear();

            Tensor<float> input_tensor_image_embeds = new DenseTensor<float>(input_image_feature, image_features_shape);
            Tensor<float> input_tensor_Div_output_0 = new DenseTensor<float>(input_text_feature, text_features_shape);
            Tensor<long> input_ids = new DenseTensor<long>(input_id, new[] { 1, 16 });

            /*
                name:image_embeds
                tensor:Float[1, 24, 24, 768]
                name:/owlvit/Div_output_0
                tensor:Float[1, 512]
                name:input_ids
                tensor:Int64[1, 16]
             
             */
            input_container.Add(NamedOnnxValue.CreateFromTensor("image_embeds", input_tensor_image_embeds));
            input_container.Add(NamedOnnxValue.CreateFromTensor("/owlvit/Div_output_0", input_tensor_Div_output_0));
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_ids", input_ids));

            result_infer = onnx_session_transformer.Run(input_container);

            results_onnxvalue = result_infer.ToArray();

            result_tensors = results_onnxvalue[0].AsTensor<float>();

            return results_onnxvalue[0].AsTensor<float>().ToList();
        }

        public List<BoxInfo> detect(Mat srcimg, List<string> texts)
        {
            float ratioh = 1.0f * srcimg.Rows / inpHeight;
            float ratiow = 1.0f * srcimg.Cols / inpWidth;

            List<float> confidences = new List<float>();
            List<Rect> boxes = new List<Rect>();
            List<string> className = new List<string>();

            for (int i = 0; i < input_ids.Count; i++)
            {
                List<float> logits = decode(image_features, text_features[i], input_ids[i]);

                for (int j = 0; j < logits.Count; j++)
                {
                    float score = sigmoid(logits[j]);
                    if (score >= bbox_threshold)
                    {
                        //还原回到原图
                        int xmin = (int)(pred_boxes[j].X * ratiow);
                        int ymin = (int)(pred_boxes[j].Y * ratioh);
                        int xmax = (int)((pred_boxes[j].X + pred_boxes[j].Width) * ratiow);
                        int ymax = (int)((pred_boxes[j].Y + pred_boxes[j].Height) * ratioh);
                        //越界检查保护
                        xmin = Math.Max(Math.Min(xmin, srcimg.Cols - 1), 0);
                        ymin = Math.Max(Math.Min(ymin, srcimg.Rows - 1), 0);
                        xmax = Math.Max(Math.Min(xmax, srcimg.Cols - 1), 0);
                        ymax = Math.Max(Math.Min(ymax, srcimg.Rows - 1), 0);

                        boxes.Add(new Rect(xmin, ymin, xmax - xmin, ymax - ymin));
                        confidences.Add(score);
                        className.Add(texts[i]);
                    }
                }
            }

            float nmsThreshold = 0.5f;
            int[] indices;

            CvDnn.NMSBoxes(boxes, confidences, bbox_threshold, nmsThreshold, out indices);

            List<BoxInfo> objects = new List<BoxInfo>();

            for (int i = 0; i < indices.Length; ++i)
            {
                BoxInfo temp = new BoxInfo();
                temp.text = className[i];
                temp.prob = confidences[i];
                temp.box = boxes[i];
                objects.Add(temp);
            }

            return objects;
        }

    }
}

下载

源码下载

相关推荐
封步宇AIGC4 分钟前
量化交易系统开发-实时行情自动化交易-Okex K线数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC6 分钟前
量化交易系统开发-实时行情自动化交易-Okex交易数据
人工智能·python·机器学习·数据挖掘
z千鑫8 分钟前
【人工智能】利用大语言模型(LLM)实现机器学习模型选择与实验的自动化
人工智能·gpt·机器学习·语言模型·自然语言处理·自动化·codemoss
shelly聊AI10 分钟前
AI赋能财务管理,AI技术助力企业自动化处理财务数据
人工智能·财务管理
波点兔11 分钟前
【部署glm4】属性找不到、参数错误问题解决(思路:修改模型包版本)
人工智能·python·机器学习·本地部署大模型·chatglm4
佚明zj1 小时前
全卷积和全连接
人工智能·深度学习
程序小旭3 小时前
机器视觉基础—双目相机
计算机视觉·双目相机
qzhqbb4 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨4 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能