算法训练营Day43(完全背包[组合排列])

完全背包理论

正序遍历,先背包先物品都可以,

正序遍历的话,之前的物品价值还在,可以用上。

物品和背包都是有前面推出来,都可以。

但是其他的非纯理论的完全背包问题就要看场景,确定先背包还是先物品了

java 复制代码
//先遍历物品,再遍历背包
private static void testCompletePack(){
    int[] weight = {1, 3, 4};
    int[] value = {15, 20, 30};
    int bagWeight = 4;
    int[] dp = new int[bagWeight + 1];
    for (int i = 0; i < weight.length; i++){ // 遍历物品
        for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
            dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    for (int maxValue : dp){
        System.out.println(maxValue + "   ");
    }
}

//先遍历背包,再遍历物品
private static void testCompletePackAnotherWay(){
    int[] weight = {1, 3, 4};
    int[] value = {15, 20, 30};
    int bagWeight = 4;
    int[] dp = new int[bagWeight + 1];
    for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
        for (int j = 0; j < weight.length; j++){ // 遍历物品
            if (i - weight[j] >= 0){
                dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
            }
        }
    }
    for (int maxValue : dp){
        System.out.println(maxValue + "   ");
    }
}

518. 零钱兑换 II

518. 零钱兑换 II - 力扣(LeetCode)

得到的是组合数

java 复制代码
class Solution {
    public int change(int amount, int[] coins) {
        //dp数组,装满容量为j的背包,有dp[j] 种方法
        int [] dp = new int[amount+1];
        //初始化累加得到最终结果,且递推公式里没有+数组的字段,则初始为1
        dp[0] = 1;
        for(int i = 0;i<coins.length;i++){
            for(int j = coins[i];j<=amount;j++){
                //递推公式
                dp[j]+=dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
}

377. 组合总和 Ⅳ

377. 组合总和 Ⅳ - 力扣(LeetCode)

java 复制代码
class Solution {
    public int combinationSum4(int[] nums, int target) {
        //dp数组,装满容量为j的背包,有dp[j] 种方法
        int [] dp = new int[target+1];
        dp[0] = 1;

        
        for(int i = 0;i<=target;i++ ){//背包
            for(int j = 0;j<nums.length;j++){
                if (i >= nums[j]) {//要保证背包装的下物品
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
}

总结

完全背包在处理多少种方法的时候,先物品再背包表示组合,先背包再物品表示排列

处理能不能装的下的时候,都可以。

拓展

爬楼梯一次可以不同的台阶的话,怎么搞

也是体现遍历顺序对背包问题的重要性,这里二刷的时候总结背包问题的时候好好整理一下,

今日任务完成。

相关推荐
chenziang11 小时前
leetcode hot100 环形链表2
算法·leetcode·链表
Captain823Jack3 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
Captain823Jack3 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Aileen_0v04 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
是小胡嘛4 小时前
数据结构之旅:红黑树如何驱动 Set 和 Map
数据结构·算法
m0_748255024 小时前
前端常用算法集合
前端·算法
呆呆的猫4 小时前
【LeetCode】227、基本计算器 II
算法·leetcode·职场和发展
Tisfy4 小时前
LeetCode 1705.吃苹果的最大数目:贪心(优先队列) - 清晰题解
算法·leetcode·优先队列·贪心·
余额不足121385 小时前
C语言基础十六:枚举、c语言中文件的读写操作
linux·c语言·算法
yuanManGan6 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表