LangChain+sqlite3简化sql操作 =>解放双手

浅聊一下

数据库的操作想来掘友们是炉火纯青,但是每一条增删改查语句还是得要我们自己来写,今天我带来了LangChain+sql,为大家释放双手,提高效率...

开始

解析

我们首先使用LLM大模型来对我们提出的问题或者操作进行自然语言分析,分析完之后,再交给LangChain相关模块进行操作,再给你返回结果,返回的结果可以是json,图表等等格式,你要做的就是泡杯茶等它出结果,对比传统的数据库操作方法,着实是解放了双手...

进入colab

我们先来到colab

我们将使用LangChain和sqlite来完成今天的实验,sqlite是一个轻量级关系型数据库,一般在测试产品想法的时候会用到...我们不需要下载它,直接引入+使用就好

创建sqlite数据库

sqlite是python自带的本地数据库,我们在这里直接引入就好,创建了一个FlowerShop.db

接下来便是连接数据库,和其他数据库的连接操作类似

cursor.execute()在括号中插入sql执行

最后遍历flowers数组,完成sqlite数据库的初始化

点击播放键运行,数据库就创建并且初始化完成了

python 复制代码
# 轻量级关系型数据库 大佬一般在测试产品想法的时候用它
# 本地数据库 Python自带
import sqlite3
conn = sqlite3.connect('FlowerShop.db')
cursor = conn.cursor()
cursor.execute('''
  CREATE TABLE FLOWERS(
    ID INTEGER PRIMARY KEY,
    Name TEXT NOT NULL,
    Type TEXT NOT NULL,
    Source TEXT NOT NULL,
    PurchasePrice REAL,
    SalePrice REAL,
    StockQuantity INTEGER,
    SoldQuantity INTEGER,
    ExpiryDate DATE,
    Description TEXT,
    EntryDate DATE DEFAULT CURRENT_DATE
  );
''')

flowers = [ ('Rose', 'Flower', 'France', 1.2, 2.5, 100, 10, '2023-12-31', 'A beautiful red rose'), ('Tulip', 'Flower', 'Netherlands', 0.8, 2.0, 150, 25, '2024-12-31', 'A colorful tulip'), ('Lily', 'Flower', 'China', 1.5, 3.0, 80, 5, '2023-12-31', 'An elegant white lily'), ('Daisy', 'Flower', 'USA', 0.7, 1.8, 120, 15, '2023-12-31', 'A cheerful daisy flower'), ('Orchid', 'Flower', 'Brazil', 2.0, 4.0, 50, 2, '2023-12-31', 'A delicate purple orchid')]
for flower in flowers:
  cursor.execute('''
    INSERT INTO Flowers(Name,Type,Source,PurchasePrice,SalePrice,StockQuantity,SoldQuantity,ExpiryDate,Description)
    VALUES(?,?,?,?,?,?,?,?,?);
  ''',flower)
conn.commit()
conn.close()

下载配置

下载一下我们需要用到的框架,点击播放键运行

Python 复制代码
!pip install openai==0.28.1 #LLM
!pip install langchain #AI框架
!pip install langchain-experimental # 实验 sql

提出问题

Python 复制代码
# Langchain 来将llm 和用户间chain起来 连数据库  八爪鱼
# langchain 有一个模块叫utilities 工具库
from langchain.utilities import SQLDatabase
# 大模型模块
from langchain.llms import OpenAI
from langchain_experimental.sql import SQLDatabaseChain
# 返回数据库对象
db = SQLDatabase.from_uri("sqlite:///FlowerShop.db")
# 返回openai实例 (verbose=True)细节打印出来
llm = OpenAI(temperature=0, verbose=True, api_key='------你的OpenAI-Key-------')
# Chain 起来这些
# langchain 提供了各种chain
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
response = db_chain.run("有多少种不同的鲜花")
print(response)

先导入LangChain 的工具库和模块

再通过数据库 URI 创建数据库对象db和创建openai实例

db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)这里就是将LangChan和数据库链接起来的秘诀,使用 LangChain 提供的工具库创建数据库链

最后run一下得到结果

再测试一下

测试添加数据操作:

结尾

我们可以看到,不用我们再写代码了,导入LangChain,它就能帮我们出色的完成数据库任务,解放双手,从我做起...

相关推荐
寒月霜华34 分钟前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师2 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
MarkHard1234 小时前
如何利用redis使用一个滑动窗口限流
数据库·redis·缓存
cxr8284 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡4 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃5 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)5 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao5 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶