Ubuntu20.04下A-LOAM配置安装及测试教程(包含报错问题踩坑)

参考文章:

ubuntu20.04下ros运行A-LOAM
Ubuntu20.04下运行LOAM系列:A-LOAM、LeGO-LOAM、SC-LeGO-LOAM、LIO-SAM 和 LVI-SAM

需要学习源码的同学可以下载LOAM论文
LOAM论文链接

1.需要安装的库文件

1.1Eigen 3.3

可以直接使用apt命令安装,或者去官网下载源码安装

cpp 复制代码
sudo apt-get install libeigen3-dev

安装成功如下,我这里之前装过所以显示如下,可以看到安装的版本为3.3.7

1.2 ceres

cpp 复制代码
//克隆下来,如果网络不好一直下载不了就去官网下载源码然后解压
git clone https://ceres-solver.googlesource.com/ceres-solver
 //在当前目录下创建文件夹ceres-bin
sudo mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver
make -j4
make test
sudo make install

按照上面的步骤装好之后,我们再来测试一下ceres是否装好了
测试ceres

cpp 复制代码
sudo mkdir ceres_test
cd ceres_test
touch CMakeLists.txt
touch cere_example.cpp
sudo mkdir build 
cd build
cmake ..
make
./ceres_example

其中CMakeLists.txt和ceres_example.cpp文件内容分别如下

CMakeLists.txt

cpp 复制代码
cmake_minimum_required(VERSION 3.8.0)
 
project(ceres_example)
 
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
 
find_package(Ceres REQUIRED)
 
include_directories(
  ${CERES_INCLUDE_DIRS}
)
 
add_executable(ceres_example
ceres_example.cpp)
 
target_link_libraries(ceres_example
    ${CERES_LIBRARIES}
)

ceres_example

cpp 复制代码
#include <ceres/ceres.h>
 
class CostFunctor {
public:
    template <typename T>
    bool operator()(const T* const x, T* residual) const
    {
        residual[0] = 10.0 - x[0];
        return true;
    }
};
 
int main(int argc, char const* argv[])
{
    double initial_x = 5.0;
    double x = initial_x;
 
    // Build the problem.
    ceres::Problem problem;
 
    // Set up the only cost function (also known as residual). This uses
    // auto-differentiation to obtain the derivative (jacobian).
    ceres::CostFunction* cost_function = new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
    problem.AddResidualBlock(cost_function, nullptr, &x);
 
    // Run the solver!
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::DENSE_QR;
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;
    Solve(options, &problem, &summary);
 
    std::cout << summary.BriefReport() << "\n";
    std::cout << "x : " << initial_x
              << " -> " << x << "\n";
    return 0;
}

运行后输出如下,就代表测试成功,ceres安装成功

1.3 pcl

同样的可以使用apt安装,或者去官网下载源码自行安装

cpp 复制代码
sudo apt install libpcl-dev

2 下载编译A-LOAM

2.1下载源码
A-LOAM开源地址

cpp 复制代码
//建立A-LOAM工作空间
sudo mkdir ALOAM
cd ALOAM
sudo mkdir src
cd src
 //clone下来,如果网络不好同样可以直接去官网下载源码下来解压
git clone https://github.com/HKUST-Aerial-Robotics/A-LOAM.git

2.2修改CMakeLists.txt

由于PCL版本1.10,将C++标准改为14,在A-LOAM源码中的CMakeLists.txt中进行如下修改

cpp 复制代码
//set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_FLAGS "-std=c++14")

2.2 修改源码

如果我们下载下来源码之后直接对其编译,是会发生报错的,因此我们需要对源码进行一些修改

  • 将四个.cpp文件中的/camera_init修改为camera_init
  • 将scanRegistration.cpp中的 #include <opencv/cv.h> 修改为#include <opencv2/imgproc.hpp>
  • 修改kittiHelper.cpp中 CV_LOAD_IMAGE_GRAYSCALE为 cv::IMREAD_GRAYSCALE
  • 如果编译遇到大量未找到Eigen相关错误,将四个.cpp文件中的#include <eigen3/Eigen/Dense>修改为#include <Eigen/Dense>

2.3 编译ALOAM

cpp 复制代码
//定位至我们原来新建的工作空间中进行编译
cd ~/ALOAM/
catkin_make

编译成功显示如下

3 运行测试ALOAM

在A-LOAM源码中新建dataSet文件夹存放我们的数据集,将nsh_indooroutdoor.bag数据集下载至该文件夹中。

在A-LOAM源码中找打launch文件夹,在该文件夹中打开终端并输入如下命令

cpp 复制代码
roslaunch  aloam_velodyne_VLP_16.launch

然后再在dateSet文件夹中打开一个终端,输入如下命令开始播放数据集

cpp 复制代码
rosbag play nsh_indoor_outdoor.bag

显示效果如下:

最后测试成功。

4 关于报错

如果我们在编译ALOAM的时候出现大量关于ceres的报错,如下图所示

解决方法:

是因为ceres版本的问题,我们可以将ceres更换至和A-LOAM配套的版本,或者进行如下的源码修改:

在laserMapping.cpp(row567-568)和 laserOdometry.cpp(row286-287)这两个cpp文件中,将如下代码

cpp 复制代码
ceres::LocalParameterization *q_parameterization = new ceres::EigenQuaternionParameterization();

改为:

cpp 复制代码
ceres::Manifold *q_parameterization = new ceres::EigenQuaternionManifold();

再次进行catkin_make发现编译成功,问题解决!

相关推荐
bigFish啦啦啦20 小时前
D435i + ROS2
slam
点云SLAM14 天前
PyTorch 中torch.clamp函数使用详解和实战示例
人工智能·pytorch·python·自动驾驶·slam·3d深度学习·张量操作
davidson147124 天前
gazebo仿真中对无人机集成的相机进行标定(VINS-Fusion)
ubuntu·无人机·slam·d435i·px4·gazebo·vins-fusion
听风吹雨yu24 天前
JY901-ROS2驱动代码
slam·ros2·humble·rviz·imu·foxy
火星机器人life1 个月前
ubuntu20使用自主探索算法explore_lite实现机器人自主探索导航建图
slam
Perishell1 个月前
无人机避障——感知部分(Ubuntu 20.04 复现Vins Fusion跑数据集)胎教级教程
无人机·slam·建图感知
xMathematics1 个月前
ORB-SLAM2学习笔记:ORBextractor::operator()函数的逐行解析
人工智能·计算机视觉·机器人·无人机·slam
大鹅同志1 个月前
ROS合集(七)SVIn2声呐模块分析
slam·sonar·rov·水下slam
清 澜1 个月前
《三维点如何映射到图像像素?——相机投影模型详解》
计算机视觉·机器人·自动驾驶·slam·三维重建·三维视觉·投影变换
点云SLAM2 个月前
PCL点云库点云数据处理入门系列教材目录(2025年5月更新....)
计算机视觉·slam·点云配准·点云数据处理·pcl点云库·点云分割·点云识别