checkpoint存的是参数还是模型?

在深度学习中,术语 "checkpoint" 通常用来指代在训练过程中保存的模型参数的一种形式。模型参数是深度学习模型中学到的权重和偏置等参数,它们定义了模型的状态。

当你在训练深度学习模型时,你可能会定期保存模型的参数,以便在需要时能够恢复训练或者用于推断。这些保存的参数通常被称为 checkpoint。

一个 checkpoint 文件通常包含了模型中所有的权重和偏置参数,以及一些额外的信息,比如优化器的状态和当前训练的轮数等。当你加载一个 checkpoint 时,你可以将这些参数设置到模型中,使模型恢复到之前保存的状态。

需要注意的是,checkpoint 存储的是模型的参数而不是模型的架构。模型的架构通常在代码中定义,并且在训练期间不会变化。当你加载一个 checkpoint 时,你需要确保你的模型架构与保存时相同,以便能够正确地加载参数

相关推荐
张登杰踩25 分钟前
工业产品表面缺陷检测方法综述:从传统视觉到深度学习
人工智能·深度学习
DKunYu2 小时前
2.1线性回归
pytorch·python·深度学习·1024程序员节
大象耶3 小时前
计算机视觉六大前沿创新方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
hour_go3 小时前
【知识图谱】图神经网络(GNN)核心概念详解:从消息传递到实战应用
笔记·深度学习·神经网络·1024程序员节
学术头条5 小时前
用视觉压缩文本!清华、智谱推出Glyph框架:通过视觉-文本压缩扩展上下文窗口
人工智能·深度学习·计算机视觉
B站_计算机毕业设计之家6 小时前
基于python人脸识别系统 人脸检测 实时检测 深度学习 Dlib库 ResNet深度卷积神经网络 pyqt设计 大数据(源码)✅
python·深度学习·目标检测·计算机视觉·信息可视化·人脸识别·1024程序员节
Theodore_10228 小时前
机器学习(9)正则化
人工智能·深度学习·机器学习·计算机视觉·线性回归·1024程序员节
Theodore_10228 小时前
机器学习(10)L1 与 L2 正则化详解
人工智能·深度学习·机器学习·梯度下降·1024程序员节
盼小辉丶8 小时前
视觉Transformer实战 | Transformer详解与实现
pytorch·深度学习·transformer·1024程序员节
千禧皓月9 小时前
【Diffusion Model】发展历程
人工智能·深度学习·diffusion model·1024程序员节