checkpoint存的是参数还是模型?

在深度学习中,术语 "checkpoint" 通常用来指代在训练过程中保存的模型参数的一种形式。模型参数是深度学习模型中学到的权重和偏置等参数,它们定义了模型的状态。

当你在训练深度学习模型时,你可能会定期保存模型的参数,以便在需要时能够恢复训练或者用于推断。这些保存的参数通常被称为 checkpoint。

一个 checkpoint 文件通常包含了模型中所有的权重和偏置参数,以及一些额外的信息,比如优化器的状态和当前训练的轮数等。当你加载一个 checkpoint 时,你可以将这些参数设置到模型中,使模型恢复到之前保存的状态。

需要注意的是,checkpoint 存储的是模型的参数而不是模型的架构。模型的架构通常在代码中定义,并且在训练期间不会变化。当你加载一个 checkpoint 时,你需要确保你的模型架构与保存时相同,以便能够正确地加载参数

相关推荐
李师兄说大模型10 分钟前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
锅挤1 小时前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
网安INF1 小时前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
喜欢吃豆1 小时前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型
喜欢吃豆2 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
shangyingying_111 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎13 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊13 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Blossom.11814 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn