【huggingface】【pytorch-image-models】timm框架中使用albumentations库数据增广

文章目录

  • 一、前言
  • 二、实操
    • [2.1 声明库](#2.1 声明库)
    • [2.2 定义你的数据增广算子](#2.2 定义你的数据增广算子)
    • [2.3 加入其中](#2.3 加入其中)

一、前言

问题是这样的,在使用timm框架训练时,发现数据增广不够,想用Albumentations库的数据增广,怎么把后者嵌入到前者的训练中。

其实也是比较简单的,这里笔者也是做个笔记以往忘记,需要的童鞋自取。

二、实操

我们知道训练才需要数据增广,原始的数据增广是在:

其实也就是用XXX_tfl来收集数据增广的算子,

那么要加入Albumentations的算子,只需要3步:

2.1 声明库

py 复制代码
import numpy as np
from PIL import Image
import albumentations as A

2.2 定义你的数据增广算子

py 复制代码
albumentations_transform = A.Compose([
    A.XXXXX()
])

2.3 加入其中

py 复制代码
primary_tfl += [
    transforms.Lambda(lambda img: Image.fromarray(
        albumentations_transform_1(image=np.array(img))['image'].astype('uint8')))
]

这样在最后跟原始的数据增广算子,用transforms.Compose(XX)返回即可,这个本身自带了。

以上就可以搞定,在根据我之前的博客打印出预处理以后的图片即可。Enjoy~

∼ O n e p e r s o n g o f a s t e r , a g r o u p o f p e o p l e c a n g o f u r t h e r ∼ \sim_{One\ person\ go\ faster,\ a\ group\ of\ people\ can\ go\ further}\sim ∼One person go faster, a group of people can go further∼

相关推荐
程序员欣宸2 分钟前
LangChain4j实战之十三:函数调用,低级API版本
java·人工智能·ai·langchain4j
charlie1145141913 分钟前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy
咚咚王者8 分钟前
人工智能之核心基础 机器学习 第十二章 半监督学习
人工智能·学习·机器学习
人工智能训练17 分钟前
UE5 如何显示蓝图运行流程
人工智能·ue5·ai编程·数字人·蓝图
袁气满满~_~40 分钟前
Python数据分析学习
开发语言·笔记·python·学习
deephub1 小时前
构建自己的AI编程助手:基于RAG的上下文感知实现方案
人工智能·机器学习·ai编程·rag·ai编程助手
AI营销干货站1 小时前
工业B2B获客难?原圈科技解析2026五大AI营销增长引擎
人工智能
程序员老刘·1 小时前
重拾Eval能力:D4rt为Flutter注入AI进化基因
人工智能·flutter·跨平台开发·客户端开发
kebijuelun1 小时前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
Deepoch1 小时前
Deepoc具身模型开发板:让炒菜机器人成为您的智能厨师
人工智能·机器人·开发板·具身模型·deepoc·炒菜机器人·厨房机器人