【huggingface】【pytorch-image-models】timm框架中使用albumentations库数据增广

文章目录

  • 一、前言
  • 二、实操
    • [2.1 声明库](#2.1 声明库)
    • [2.2 定义你的数据增广算子](#2.2 定义你的数据增广算子)
    • [2.3 加入其中](#2.3 加入其中)

一、前言

问题是这样的,在使用timm框架训练时,发现数据增广不够,想用Albumentations库的数据增广,怎么把后者嵌入到前者的训练中。

其实也是比较简单的,这里笔者也是做个笔记以往忘记,需要的童鞋自取。

二、实操

我们知道训练才需要数据增广,原始的数据增广是在:

其实也就是用XXX_tfl来收集数据增广的算子,

那么要加入Albumentations的算子,只需要3步:

2.1 声明库

py 复制代码
import numpy as np
from PIL import Image
import albumentations as A

2.2 定义你的数据增广算子

py 复制代码
albumentations_transform = A.Compose([
    A.XXXXX()
])

2.3 加入其中

py 复制代码
primary_tfl += [
    transforms.Lambda(lambda img: Image.fromarray(
        albumentations_transform_1(image=np.array(img))['image'].astype('uint8')))
]

这样在最后跟原始的数据增广算子,用transforms.Compose(XX)返回即可,这个本身自带了。

以上就可以搞定,在根据我之前的博客打印出预处理以后的图片即可。Enjoy~

∼ O n e p e r s o n g o f a s t e r , a g r o u p o f p e o p l e c a n g o f u r t h e r ∼ \sim_{One\ person\ go\ faster,\ a\ group\ of\ people\ can\ go\ further}\sim ∼One person go faster, a group of people can go further∼

相关推荐
倔强青铜三2 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
Norvyn_726 分钟前
LeetCode|Day18|20. 有效的括号|Python刷题笔记
笔记·python·leetcode
Teacher.chenchong31 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ33 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI33 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课35 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
chao_78944 分钟前
更灵活方便的初始化、清除方法——fixture【pytest】
服务器·自动化测试·python·pytest
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学