【huggingface】【pytorch-image-models】timm框架中使用albumentations库数据增广

文章目录

  • 一、前言
  • 二、实操
    • [2.1 声明库](#2.1 声明库)
    • [2.2 定义你的数据增广算子](#2.2 定义你的数据增广算子)
    • [2.3 加入其中](#2.3 加入其中)

一、前言

问题是这样的,在使用timm框架训练时,发现数据增广不够,想用Albumentations库的数据增广,怎么把后者嵌入到前者的训练中。

其实也是比较简单的,这里笔者也是做个笔记以往忘记,需要的童鞋自取。

二、实操

我们知道训练才需要数据增广,原始的数据增广是在:

其实也就是用XXX_tfl来收集数据增广的算子,

那么要加入Albumentations的算子,只需要3步:

2.1 声明库

py 复制代码
import numpy as np
from PIL import Image
import albumentations as A

2.2 定义你的数据增广算子

py 复制代码
albumentations_transform = A.Compose([
    A.XXXXX()
])

2.3 加入其中

py 复制代码
primary_tfl += [
    transforms.Lambda(lambda img: Image.fromarray(
        albumentations_transform_1(image=np.array(img))['image'].astype('uint8')))
]

这样在最后跟原始的数据增广算子,用transforms.Compose(XX)返回即可,这个本身自带了。

以上就可以搞定,在根据我之前的博客打印出预处理以后的图片即可。Enjoy~

∼ O n e p e r s o n g o f a s t e r , a g r o u p o f p e o p l e c a n g o f u r t h e r ∼ \sim_{One\ person\ go\ faster,\ a\ group\ of\ people\ can\ go\ further}\sim ∼One person go faster, a group of people can go further∼

相关推荐
七夜zippoe3 分钟前
事件驱动架构:构建高并发松耦合系统的Python实战
开发语言·python·架构·eda·事件驱动
Kratzdisteln17 分钟前
【MVCD】PPT提纲汇总
经验分享·python
意疏37 分钟前
节点小宝4.0 正式发布:一键直达,重新定义远程控制!
人工智能
一个无名的炼丹师1 小时前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
Yan-英杰1 小时前
BoostKit OmniAdaptor 源码深度解析
网络·人工智能·网络协议·tcp/ip·http
AI街潜水的八角1 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
用户8356290780511 小时前
用Python轻松管理Word页脚:批量处理与多节文档技巧
后端·python
用泥种荷花1 小时前
【LangChain学习笔记】Message
人工智能
阿里云大数据AI技术1 小时前
一套底座支撑多场景:高德地图基于 Paimon + StarRocks 轨迹服务实践
人工智能
云擎算力平台omniyq.com1 小时前
CES 2026观察:从“物理AI”愿景看行业算力基础设施演进
人工智能