GPT实战系列-ChatGLM3管理工具的API接口

GPT实战系列-ChatGLM3管理外部借力工具

用ChatGLM的工具可以实现很多查询接口和执行命令,外部工具该如何配置使用?如何联合它们实现大模型查询助手功能?例如调用工具实现股票信息查询,网络天气查询等助手功能。

LLM大模型相关文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

配置tools信息

python 复制代码
tools = [
	{'name': 'querystock', 
     'description': '查询指定股票的实时价格', 
     'parameters': 
     	{'type': 'object', 
         'properties': 
         	{
               'symbol': {'description': '需要查询的股票代码'}
            }, 
         'required': []
        }
    }, 
]

参数解释:

复制代码
"name":为配置tool工具名;

"description":对工具的描述;

"parameters":

        "type":数据类型默认为"object";
    
        "properties":在此定义工具的属性以及对属性值的描述;
    
        "required": 需要返回的属性;

系统描述接口调用

python 复制代码
system_item = {"role": "system",
               "content": "Answer the following questions as best as you can. You have access to the following tools:",
               "tools": tools}

程序中调用语句以便实现工具调用

python 复制代码
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()

past_key_values, history = None, [system_item]

调用模型时,当对话query和tool相关时,模型会自动调用tool并反馈

python 复制代码
query = "帮我查询股票sz000001的价格"
response, history = model.chat(tokenizer, query, history=history)
print(response)

期望调用工具得到输出为:

json 复制代码
{"name": "querystock", "parameters": {"symbol": "sz000001"}}

这表示模型需要调用工具 querystock,并且需要传入参数 symbol

调用工具,生成回复

此时需要自行实现调用工具的逻辑。假设已经得到返回结果,将结果以 json 格式返回给模型并得到回复。

python 复制代码
result = json.dumps({"price": 9.270}, ensure_ascii=False)
response, history = model.chat(tokenizer, result, history=history, role="observation")
print(response)

这里 role="observation" 表示输入的是工具调用的返回值而不是用户输入,不能省略。

经LLM整理信息后,期望得到的输出为

复制代码
根据您的查询,经过API的调用,股票 sz000001 的价格是 9.270。

表示本次工具调用已经结束,模型根据返回结果生成回复。

可以根据返回的 responsestr 还是 dict 来判断返回的是生成的回复还是工具调用请求。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End


GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
玲小珑5 小时前
LangChain.js 完全开发手册(九)LangGraph 状态图与工作流编排
前端·langchain·ai编程
RainbowSea16 小时前
12. LangChain4j + 向量数据库操作详细说明
java·langchain·ai编程
RainbowSea16 小时前
11. LangChain4j + Tools(Function Calling)的使用详细说明
java·langchain·ai编程
AI大模型17 小时前
GitHub 狂飙 72k Star,这本大模型书凭啥能圈粉无数?
程序员·llm·agent
堆栈future20 小时前
秒级生成4K图!字节豆包Seedream 4.0实测:完爆GPT-4o和Nano Banana
llm·aigc
大模型教程1 天前
小白学大模型:从零搭建LLaMA
程序员·llm·llama
AI大模型1 天前
一篇文章看懂RAG + 实战,看不懂来揍我
程序员·llm·agent
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
叫我詹躲躲1 天前
n8n 自动化工作流平台完整部署
前端·langchain·领域驱动设计
智泊AI1 天前
Transformer之词嵌入 | 为什么要做词嵌入?
llm