GPT实战系列-ChatGLM3管理工具的API接口

GPT实战系列-ChatGLM3管理外部借力工具

用ChatGLM的工具可以实现很多查询接口和执行命令,外部工具该如何配置使用?如何联合它们实现大模型查询助手功能?例如调用工具实现股票信息查询,网络天气查询等助手功能。

LLM大模型相关文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

配置tools信息

python 复制代码
tools = [
	{'name': 'querystock', 
     'description': '查询指定股票的实时价格', 
     'parameters': 
     	{'type': 'object', 
         'properties': 
         	{
               'symbol': {'description': '需要查询的股票代码'}
            }, 
         'required': []
        }
    }, 
]

参数解释:

复制代码
"name":为配置tool工具名;

"description":对工具的描述;

"parameters":

        "type":数据类型默认为"object";
    
        "properties":在此定义工具的属性以及对属性值的描述;
    
        "required": 需要返回的属性;

系统描述接口调用

python 复制代码
system_item = {"role": "system",
               "content": "Answer the following questions as best as you can. You have access to the following tools:",
               "tools": tools}

程序中调用语句以便实现工具调用

python 复制代码
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()

past_key_values, history = None, [system_item]

调用模型时,当对话query和tool相关时,模型会自动调用tool并反馈

python 复制代码
query = "帮我查询股票sz000001的价格"
response, history = model.chat(tokenizer, query, history=history)
print(response)

期望调用工具得到输出为:

json 复制代码
{"name": "querystock", "parameters": {"symbol": "sz000001"}}

这表示模型需要调用工具 querystock,并且需要传入参数 symbol

调用工具,生成回复

此时需要自行实现调用工具的逻辑。假设已经得到返回结果,将结果以 json 格式返回给模型并得到回复。

python 复制代码
result = json.dumps({"price": 9.270}, ensure_ascii=False)
response, history = model.chat(tokenizer, result, history=history, role="observation")
print(response)

这里 role="observation" 表示输入的是工具调用的返回值而不是用户输入,不能省略。

经LLM整理信息后,期望得到的输出为

复制代码
根据您的查询,经过API的调用,股票 sz000001 的价格是 9.270。

表示本次工具调用已经结束,模型根据返回结果生成回复。

可以根据返回的 responsestr 还是 dict 来判断返回的是生成的回复还是工具调用请求。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End


GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
量子位1 小时前
我们都错怪GPT-5了,路由统一算力,免费用户也能创造收益
gpt·ai编程
聚客AI3 小时前
🚀碾压传统方案!vLLM与TGI/TensorRT-LLM性能实测对比
人工智能·llm·掘金·日新计划
哪吒编程5 小时前
GPT-5发布引发用户强烈反弹,OpenAI紧急回应
gpt·chatgpt·openai
晨欣5 小时前
orjson 与 json:实战对比与选型指南(含示例)(GPT-5 回答)
gpt·json
欧阳码农6 小时前
langgraph开发Deep Research智能体-项目搭建
前端·后端·langchain
大志说编程7 小时前
LangChain框架入门14:深入解析向量存储组件VectorStore
python·langchain·ai编程
陈佬昔没带相机8 小时前
ollama 终于有UI了,但我却想弃坑了
人工智能·llm·ollama
Leinwin8 小时前
微软发布GPT-5赋能的Copilot:重构办公场景的智能革命
gpt·microsoft·copilot
Goboy8 小时前
滚动跳跃:一句话生成的极限反应小游戏
llm·ai编程·trae
Goboy9 小时前
蹦床弹跳:一句话生成的“弹跳乐园”
llm·ai编程·trae