编程探秘:Python深渊之旅-----机器学习入门(七)

团队决定在他们的项目中加入一些机器学习功能。瑞宝,对新技术充满好奇,跃跃欲试地想了解更多。

瑞宝(兴奋地):我一直想学习机器学习,现在终于有机会了!

(微笑着):机器学习是一个很广阔的领域,让我们从基础开始。我们可以使用 Python 的 scikit-learn 库来轻松入门。

码娜:听起来很酷,我们从哪里开始呢?

机器学习概念

:首先,我们需要理解机器学习是如何工作的。简单来说,机器学习就是训练计算机从数据中学习并做出预测或决策。

使用 scikit-learn

:我们将使用 scikit-learn 来实现一个简单的线性回归模型。这是一个用于预测数值型数据的基础模型。

python 复制代码
# 示例:使用 scikit-learn 实现线性回归
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np

# 生成一些随机数据
X = np.random.rand(100, 1)  # 特征
y = 2 * X + np.random.randn(100, 1)  # 目标值

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建模型
model = LinearRegression()
model.fit(X_train, y_train)  # 训练模型

# 预测和评估
predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse}")

瑞宝:哇,这就是机器学习吗?我们实际上在训练计算机!

:没错,这只是个开始。机器学习有很多不同的类型和技术,例如分类、聚类和神经网络。

小结

瑞宝和团队通过学习基本的机器学习概念和实现简单的线性回归模型,获得了初步的机器学习知识。他们感到既兴奋又受启发,对于未来在项目中应用更高级的机器学习技术充满期待。随着他们对机器学习的探索深入,他们开始意识到,利用数据和算法,他们能够解决以前无法想象的问题。这章节的结束,是他们机器学习旅程的一个新开始。

相关推荐
极客小云2 小时前
【ComfyUI API 自动化利器:comfyui_xy Python 库使用详解】
网络·python·自动化·comfyui
凡人叶枫2 小时前
C++中输入、输出和文件操作详解(Linux实战版)| 从基础到项目落地,避坑指南
linux·服务器·c语言·开发语言·c++
闲人编程2 小时前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
春日见2 小时前
车辆动力学:前后轮车轴
java·开发语言·驱动开发·docker·计算机外设
痴儿哈哈2 小时前
自动化机器学习(AutoML)库TPOT使用指南
jvm·数据库·python
A尘埃2 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
锐意无限2 小时前
Swift 扩展归纳--- UIView
开发语言·ios·swift
低代码布道师2 小时前
Next.js 16 全栈实战(一):从零打造“教培管家”系统——环境与脚手架搭建
开发语言·javascript·ecmascript
花酒锄作田2 小时前
SQLAlchemy中使用UPSERT
python·sqlalchemy
SoleMotive.2 小时前
一个准程序员的健身日志:用算法调试我的增肌计划
python·程序员·健身·职业转型