详解矩阵的正交化(附例题分析)

目录

[一. 矩阵Gram-Schmidt正交化的好处](#一. 矩阵Gram-Schmidt正交化的好处)

[二. 矩阵标准正交化过程](#二. 矩阵标准正交化过程)

[三. 例题](#三. 例题)

[3.1 标准正交化](#3.1 标准正交化)

[3.2 算法小结](#3.2 算法小结)

[3.3 优化分析](#3.3 优化分析)

[四. 小结](#四. 小结)

矩阵有两类等价关系

矩阵对角化

特殊矩阵­


一. 矩阵Gram-Schmidt正交化的好处

假如有三个线性独立的向量a,b,c,他们是标准正交的(orthonormal),也就是长度均为1且两两相互正交。

如果任意给一个向量v,计算v投影到a上的向量为:

其中计算结果为标量,代表向量v投影到单位向量a上的长度

向量a和b可以形成一个平面,向量v投影到该平面的向量可以直接计算为:

同理,如果想要计算投影到空间a,b,c上时,则计算为:

可以发现在标准正交向量上的投影计算非常简单,只有简单的内积过程,也就是:

那么如何把任意的矩阵转化为标准正交的矩阵呢?

二. 矩阵标准正交化过程

已知给出三个线性独立向量a,b,c。接下来我们将介绍如何将其转为标准正交向量q1,q2,q3.

先固定向量a的方向,使其与q1一样,接着将其长度变为1,如下:

由此q1即为单位向量。

将向量b分成两部分。一个是和q1同方向的向量,一个是和q2垂直方向的向量。我们只需要去掉和q1同方向的向量即可,如下:

很明显向量B和q1是互相垂直的,接着把长度转化为1,即为向量q2.来看一个直观的图:

确定好q1和q2后,接下来便可以使用同样的手段处理向量c了。因为a,b,c线性独立,所以向量c不一定在q1和q2形成的平面上。我们就可以把向量c分成两个三个分量:垂直q1和q2平面的分量,和q1同方向的分量,和q2同方向的分量。由此便可以一个新的垂直分量如下:

以上即为整个标准的Gram-Schmidt正交化过程,每次迭代均减去已确定方向的分量,形式化的表达如下:

subtract from every new vector its components in the directions that are already settled

在以上例子中,如果出现第四个向量d,则减去和q1,q2,q3同方向的分量。

三. 例题

3.1 标准正交化

给定三个向量a,b,c,如下:

将向量a转为单位向量即可形成q1,如下:

将第二个向量沿着q1方向的分量减去,即可得到B,如下:

将向量B进行标准化,也就是除以其长度,可得单位向量,如下:

去掉向量c沿着q1和q2的方向向量,可得:

观察发现向量C已经是单位向量,所以q3=C.

将以上标准正交向量q1,q2,q3作为列向量,即可构成正交矩阵Q,如下:

3.2 算法小结

Gram-Schmidt算法的输入是线性独立向量,算法的输出为标准正交的向量。算法的本质就是迭代过程,当迭代到第j步时,就是用向量减去沿着的方向向量,标准公式如下:

接着单位向量即可计算为:

3.3 优化分析

通过以上例题,我们发现Gram-Schmidt算法经常需要开平方,这给实际运算带来很多不便。比如刚才那个例题中,如果只是保留a,B,C的话,这些向量是垂直的,只是长度不一定为1,这样的话计算起来会方便很多。或者,只是到最后一步才进行开方运算。

将向量b投影到向量a上的分向量为:

由此可计算为:

同样的方法可计算C为:

四. 小结

法国哲学家、数学家勒内⦁笛卡尔(Rene Descartes)于1637年创立了笛卡尔坐标系,实现了几何问题代数化,为微积分的建立奠定了基础。笛卡尔坐标向量的代数运算可进一步拓展到欧氏空间,进而拓展到抽象的向量空间的代数运算,这些极大地扩展了数学研究范围。

矩阵有两类等价关系

矩阵相似:

,若存在非奇异矩阵,使得:

则称A与B相似。

矩阵合同:

都是对称矩阵,若存在非奇异矩阵,使得:

则称A与B合同。

相关性质:

  • 若A与B相似,则A与B有相同的特征值;
  • 若A与B合同,则A与B有相同的惯性。

矩阵对角化

若存在非奇异矩阵,使得:

则称A是可对角化的。若A可对角化,则称上式子为A的特征值分解或谱分解。矩阵A对角化的性质:

  • A可对角化的充要条件是A具有n个线性无关的特征向量;
  • A可对角化的充要条件是A的每个特征值的代数重数和几何重数相等;
  • 若A的特征值互不相同,则A可对角化

若方阵A是对称矩阵,则A可对角化。

特殊矩阵­

特殊矩阵包括:

单位矩阵,数量矩阵(对角线上元素都是同一个数值),对角矩阵,三对角矩阵(对角线、邻近对角线的上下次对角线上有元素,其他位置均为0的矩阵),上 (下) 三角矩阵,上 Hessenberg 矩阵(当行大于列+1时元素为0),下Hessenberg 矩阵(当列大于行+1时元素为0),带状矩阵­(当所有非零元素都集中在以主对角线为中心的带状区域时)

置换 (排列) 矩阵,对称矩阵 (Hermitian 矩阵),反向单位矩阵,反向对称矩阵,斜对称矩阵

Vandermonde 矩阵,Toeplitz 矩阵,循环矩阵,Hankel 矩阵­

正定矩阵,半正定矩阵,对角占优矩阵,不可约矩阵­

正交矩阵 (酉矩阵),对合矩阵,幂等矩阵 (也称投影矩阵),幂零矩阵

分块矩阵 (块对角, 块三角, ...)

相关推荐
全干engineer40 分钟前
web3-基于贝尔曼福特算法(Bellman-Ford )与 SMT 的 Web3 DeFi 套利策略研究
算法·金融·web3·去中心化·区块链·智能合约
Splendid1 小时前
Geneformer:基于Transformer的基因表达预测深度学习模型
javascript·算法
轨迹H1 小时前
【春秋云镜】CVE-2023-2130漏洞复现exp
网络协议·网络安全·渗透测试·ctf·cve
愿所愿皆可成1 小时前
机器学习之聚类Kmeans算法
算法·机器学习·kmeans·聚类
幻奏岚音1 小时前
统计学(第8版)——假设检验学习笔记(考试用)
笔记·学习·算法
hie988942 小时前
基于matlab策略迭代和值迭代法的动态规划
算法·动态规划
Coovally AI模型快速验证2 小时前
SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈
人工智能·神经网络·算法·yolo·计算机视觉·目标跟踪·无人机
Brduino脑机接口技术答疑2 小时前
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
人工智能·算法·脑机接口·新手入门
真的很上进2 小时前
2025最全TS手写题之partial/Omit/Pick/Exclude/Readonly/Required
java·前端·vue.js·python·算法·react·html5
linweidong2 小时前
GO 基础语法和数据类型面试题及参考答案(下)
算法·后端面试·泛型·go面试·go面经·go求职