中科院自动化所:基于关系图深度强化学习的机器人多目标包围问题新算法

摘要:中科院自动化所蒲志强教授团队,提出一种基于关系图的深度强化学习方法,应用于多目标避碰包围问题(MECA),使用NOKOV度量动作捕捉系统获取多机器人位置信息,验证了方法的有效性和适应性。研究成果在2022年ICRA大会发表。

在多机器人系统的研究领域中,包围控制是一个重要的课题。其在民用和军事领域都有广泛的应用场景,包括协同护航、捕获敌方目标、侦察监视、无人水面舰艇巡逻狩猎等。

这些应用的核心问题是如何控制一个多机器人系统,涉及多目标分配,同时解决目标包围和避碰子问题。这是一个巨大的挑战,特别是对于分散的多机器人系统。

中科院自动化所蒲志强教授团队在2022年ICRA大会发表论文,提出了一种基于关系图的深度强化学习方法,对各种条件下的多目标避碰包围(MECA)问题具有良好的适应性。

定义任务

该研究定义了一个MECA任务,即在具有L 个静态障碍物(黑色圆圈)的环境中,由N 个机器人(绿色圆圈)组成的多机器人系统,协同包围*K (1 < K < N)*个静止或运动的目标(红色圆圈)。

所有机器人需要自动形成多组,包围所有目标,每组需要形成圆形队形,包围一个独立的目标,同时避免碰撞。这涉及到以下三个子问题:

  1. 动态多目标分配与分组

  2. 每组分别包围

  3. 相互之间避免碰撞

分散式多机器人系统的MECA图解

方法框架

在MECA问题中,存在三种类型的实体,即机器人、目标和障碍物。不同的实体对机器人有不同的影响关系,例如避障、包围目标、与其他机器人合作等。

研究提出了一种基于机器人级和目标级关系图(RGs)的DRL分散方法,命名为MECA-DRL-RG方法。

具体而言:

  1. 利用图注意网络(GATs)对机器人级RGs进行建模和学习,该RGs由每个机器人与其他机器人、目标和障碍物之间的三个异构关系图组成。
  2. 利用GAT构建目标级RG,构建机器人与各目标之间的空间关系。目标的运动由目标级RG建模,并通过监督学习进行学习,以预测目标的轨迹。
  3. 此外,定义了一个知识嵌入式复合奖励函数,解决MECA中的多目标问题。采用基于集中式训练和去中心化执行框架的演员**-**评论家训练算法对策略网络进行训练。

MECA-DRL-RG方法的整体结构

实验验证

研究团队分别进行了仿真实验和真实环境实验。在真实实验中,情景设置为:6个机器人在有2个障碍物的环境中包围2个移动的目标。机器人的位置和速度数据由NOKOV度量动作捕捉系统提供。

6个机器人在有2个障碍物的环境中包围2个移动目标

仿真实验和真实实验都验证了,相比于其他方法,MECA-DRL-RG方法使机器人能够从周围环境中,学习异构空间关系图,并预测目标的轨迹,从而促进每个机器人对其周围环境的理解和预测。证实了MECA-DRL-RG方法的有效性。

并且,无论机器人、障碍物或目标的数量增加,抑或是目标的移动速度加快,MECA-DRL-RG方法都表现出良好的性能,具有广泛的适应性。

MECA-DRL-RG方法训练曲线


参考文献:

T. Zhang, Z. Liu, Z. Pu and J. Yi, "Multi-Target Encirclement with Collision Avoidance via Deep Reinforcement Learning using Relational Graphs," 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 8794-8800, doi: 10.1109/ICRA46639.2022.9812151.

相关推荐
合力亿捷-小亿14 分钟前
2026年AI语音机器人测评推荐:复杂噪声环境下语义识别准确率对比分析
人工智能·机器人
h7ml1 小时前
查券返利机器人的OCR识别集成:Java Tesseract+OpenCV优化图片验证码的自动解析方案
java·机器人·ocr
ZCXZ12385296a2 小时前
YOLOv8_HSPAN_机器人视觉系统中的球体目标检测与追踪_1
yolo·目标检测·机器人
八月瓜科技2 小时前
2026春晚机器人专利战:从舞台秀到资本竞逐的产业突围
大数据·人工智能·microsoft·机器人·娱乐
广州赛远3 小时前
IRB4400L-102.53喷雾机器人防护服标准解析与应用指南
机器人
不做无法实现的梦~3 小时前
思翼mk32遥控器配置图传和数传教程
linux·嵌入式硬件·机器人·自动驾驶
m0_650108243 小时前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
AI猫站长4 小时前
快讯|清华&上海期智研究院开源Project-Instinct框架,攻克机器人“感知-运动”割裂核心难题;灵心巧手入选毕马威中国“第二届智能制造科技50”榜单
人工智能·机器人·苹果·具身智能·project·灵心巧手
Ashley_Amanda4 小时前
春晚机器人“顶流”之争:从表演者到实用者的技术跃迁
机器人
渡众机器人5 小时前
智驭未来,越野如风:北京渡众机器人全新智能履带式机器人教学科研平台正式发布!
人工智能·机器人·自动驾驶·车路协同·智能网联