【CS4495】Computer Vision

Course Motivation:

Computer vision is a field that involves the development of computer programs to automatically analyze and understand the content of images acquired from a sensor. The image data can take many forms, such as video sequences, views from multiple cameras, depth measurements from the Xbox Kinect, or multi-dimensional data from a medical scanner. The objective is to produce some form of numerical or symbolic representation of the contents of the scene. At times, the field has been concerned with duplicating the human visual system's procedure for visual perception. Often models used involve the development of mathematical tools, borrowed from the fields of geometry, probability and statistics, physics, machine learning, and others. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. As a technological discipline, computer vision seeks to apply its theories and models to the construction of computer vision systems. This course will cover essential topics in the field of computer vision, providing students with background on some theoretical components of the field, as well as hands-on experience through practical and fun assignments. The course would complement existing courses in computer graphics, embedded systems, artificial intelligence and signal processing. It is important to note that computer vision is currently in a phase of high growth worldwide. Hardware companies (e.g. Intel, Samsung, Qualcomm), software companies (e.g. Google, Facebook), as well as car and entertainment companies (e.g. Disney, Microsoft: Xbox) are all currently heavily investing in these domains, and aggressively recruiting in the area. Many companies with products in the telecommunication area such as Apple, Blackberry, Google, Bell, Apple, and Nokia all have significant activities in developing vision and image manipulation apps for use in cellphones. Furthermore, a large number of startups in this area have recently enjoyed tremendous success due to the maturity and availability of the algorithms in the field as well as the ubiquitous nature of cameras today. The material covered in this course is aimed at senior undergraduates, both among those seeking employment the above application domains, and students considering the field as an area for graduate research.

Learning Outcomes:

During this course, the student will acquire a broad understanding of a variety of problems addressed by researchers in the field of computer vision. These include (but are not limited to): image formation, filtering and image enhancement, image matching, image features, feature alignment and stitching, grouping and matching, stereo, motion and optical flow estimation, segmentation, scene understanding, face detection and recognition, classifiers, deep learning and medical image analysis. Students will be given an overview of designing and programming in Python and OpenCV in the context of solving practical problems in the field of computer vision. By the end of the course, the students should be able to apply, in a design context, their acquired programming skills to address a wide variety of problems in computer vision.

相关推荐
哦哦3311 小时前
线性回归和回归决策树(CART)对比
python·pycharm
qq7422349841 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
陈天伟教授7 小时前
人工智能训练师认证教程(2)Python os入门教程
前端·数据库·python
2301_764441337 小时前
Aella Science Dataset Explorer 部署教程笔记
笔记·python·全文检索
爱笑的眼睛117 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
BoBoZz197 小时前
ExtractSelection 选择和提取数据集中的特定点,以及如何反转该选择
python·vtk·图形渲染·图形处理
liwulin05068 小时前
【PYTHON-YOLOV8N】如何自定义数据集
开发语言·python·yolo
木头左8 小时前
LSTM量化交易策略中时间序列预测的关键输入参数分析与Python实现
人工智能·python·lstm
电子硬件笔记8 小时前
Python语言编程导论第七章 数据结构
开发语言·数据结构·python
HyperAI超神经9 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm