【CS4495】Computer Vision

Course Motivation:

Computer vision is a field that involves the development of computer programs to automatically analyze and understand the content of images acquired from a sensor. The image data can take many forms, such as video sequences, views from multiple cameras, depth measurements from the Xbox Kinect, or multi-dimensional data from a medical scanner. The objective is to produce some form of numerical or symbolic representation of the contents of the scene. At times, the field has been concerned with duplicating the human visual system's procedure for visual perception. Often models used involve the development of mathematical tools, borrowed from the fields of geometry, probability and statistics, physics, machine learning, and others. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. As a technological discipline, computer vision seeks to apply its theories and models to the construction of computer vision systems. This course will cover essential topics in the field of computer vision, providing students with background on some theoretical components of the field, as well as hands-on experience through practical and fun assignments. The course would complement existing courses in computer graphics, embedded systems, artificial intelligence and signal processing. It is important to note that computer vision is currently in a phase of high growth worldwide. Hardware companies (e.g. Intel, Samsung, Qualcomm), software companies (e.g. Google, Facebook), as well as car and entertainment companies (e.g. Disney, Microsoft: Xbox) are all currently heavily investing in these domains, and aggressively recruiting in the area. Many companies with products in the telecommunication area such as Apple, Blackberry, Google, Bell, Apple, and Nokia all have significant activities in developing vision and image manipulation apps for use in cellphones. Furthermore, a large number of startups in this area have recently enjoyed tremendous success due to the maturity and availability of the algorithms in the field as well as the ubiquitous nature of cameras today. The material covered in this course is aimed at senior undergraduates, both among those seeking employment the above application domains, and students considering the field as an area for graduate research.

Learning Outcomes:

During this course, the student will acquire a broad understanding of a variety of problems addressed by researchers in the field of computer vision. These include (but are not limited to): image formation, filtering and image enhancement, image matching, image features, feature alignment and stitching, grouping and matching, stereo, motion and optical flow estimation, segmentation, scene understanding, face detection and recognition, classifiers, deep learning and medical image analysis. Students will be given an overview of designing and programming in Python and OpenCV in the context of solving practical problems in the field of computer vision. By the end of the course, the students should be able to apply, in a design context, their acquired programming skills to address a wide variety of problems in computer vision.

相关推荐
MoRanzhi12032 分钟前
15. Pandas 综合实战案例(零售数据分析)
数据结构·python·数据挖掘·数据分析·pandas·matplotlib·零售
量化交易曾小健(金融号)1 小时前
Python美股量化交易填坑记录——3.盈透(Interactive Brokers)证券API接口
开发语言·python
a1111111111ss1 小时前
添加最新的LSKNet遥感目标检测网络主干
人工智能·目标检测·计算机视觉
java1234_小锋2 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 神经网络基础原理
python·深度学习·tensorflow·tensorflow2
JJJJ_iii2 小时前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
JJJJ_iii2 小时前
【深度学习05】PyTorch:完整的模型训练套路
人工智能·pytorch·python·深度学习
程序员小远3 小时前
常用的测试用例
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
IT学长编程3 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台
辣椒http_出海辣椒3 小时前
Python 数据抓取实战:从基础到反爬策略的完整指南
python
过往入尘土3 小时前
走进 OpenCV 人脸识别的世界
人工智能·python·深度学习·opencv