【CV】使用 matplotlib 画统计图,并用 OpenCV 显示静图和动图

1. 效果

静图


动图

2.思路

  • 准备数据
  • 使用 pyplot 画统计图
  • 图片写入流,流转图(numpy)
  • matplotlib 颜色 RGB 转 OpenCV 颜色 BRG

4. 静图

代码过程有注释,很简单的实现。注意 matplotlib RGB 转 OpenCV BGR image = image[:, :, ::-1] ,否则颜色不一致。

python 复制代码
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Create  :   2024/01/15 16:22:44
@Author  :   Yuan Mingzhuo
"""

import cv2
import numpy as np
import math
import random

# 统计图
import io
from PIL import Image
import matplotlib.pyplot as plt


# 尺寸: 960x480
plt.figure(figsize=(9.6, 4.8))


def draw_charts():
    """
    画图
    """
    # 数据
    values = [random.random() for i in range(150)]
    # 清空
    plt.clf()
    # 线条
    plt.plot(values, linewidth=1, color="deepskyblue")
    plt.axis((0, 200, 0, 1))
    plt.axhline(y=(sum(values) / len(values)), linewidth=1, color="r")
    # 图写入流
    buffer = io.BytesIO()
    plt.savefig(buffer)
    # 流转图片
    image = Image.open(buffer)
    image = np.asarray(image)
    image = image[:, :, :3]
    # matplotlib RGB 转 OpenCV BGR
    image = image[:, :, ::-1]
    cv2.imwrite("test.jpg", image)

if __name__ == "__main__":
    draw_charts()

5. 动图

思路,更新数据时,重新绘制统计图。

  • x 轴不变,数据集 values 保持 x 轴的数量即可,自行实现;
  • x 轴变化,数据集 values 的数量变化而变化;

代码过程有注释,很简单的实现。注意 matplotlib RGB 转 OpenCV BGR image = image[:, :, ::-1] ,否则颜色不一致。

python 复制代码
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Create  :   2024/01/15 16:22:44
@Author  :   Yuan Mingzhuo
"""

import cv2
import numpy as np
import math
import random

# 统计图
import io
from PIL import Image
import matplotlib.pyplot as plt


# 尺寸: 960x480
plt.figure(figsize=(9.6, 4.8))


def draw_chart(values):
    """
    画图
    """
    buffer = io.BytesIO()
    # 清空
    plt.clf()
    plt.plot(values, linewidth=1, color="deepskyblue")
    axis_x = math.ceil(len(values) / 100) * 100
    plt.axis((0, axis_x, 0, 200))
    plt.axhline(y=(sum(values) / len(values)), linewidth=1, color="r")
    plt.savefig(buffer)
    # 获取图
    image = Image.open(buffer)
    image = np.asarray(image)
    image = image[:, :, :3]
    # matplotlib RGB 转 OpenCV BGR
    image = image[:, :, ::-1]
    # print(image.shape)
    # cv2.imwrite("test.jpg", image)
    return image

if __name__ == "__main__":
    # 数据
    values = []
    for i in range(1800):
        # 更新数据
        values.append(random.random() * 180)
        # 重新画图
        image = draw_chart(values)
        # 显示
        cv2.imshow("test", image)
        cv2.waitKey(100)

6. 多图

效果

代码

python 复制代码
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Create  :   2024/01/15 16:22:44
@Author  :   Yuan Mingzhuo
"""

import cv2
import numpy as np
import math
import random

# 统计图
import io
from PIL import Image
import matplotlib.pyplot as plt


# 尺寸: 960x480
plt.figure(figsize=(9.6, 4.8))


def draw_charts():
    """
    画图
    """
    # 数据
    values_a = [random.random() for i in range(150)]
    values_b = [random.random() for i in range(150)]
    values = [values_a, values_b]
    # 清空
    plt.clf()
    # 线条
    for value in values:
        plt.plot(value, linewidth=1)
    # 坐标轴
    plt.axis((0, 200, 0, 1))
    # 辅助线
    plt.axhline(y=0.5, linewidth=1, color="r")
    # 图写入流
    buffer = io.BytesIO()
    plt.savefig(buffer)
    # 流转图片
    image = Image.open(buffer)
    image = np.asarray(image)
    image = image[:, :, :3]
    # matplotlib RGB 转 OpenCV BGR
    image = image[:, :, ::-1]
    cv2.imwrite("test.jpg", image)
  

if __name__ == "__main__":
    draw_charts()

7.应用

视觉计算时,可直接显示变化过程,减少先保存数据再绘制图的过程

相关推荐
神经星星1 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星1 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
程序员Linc20 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh28 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能31 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820940 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能41 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI1 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能