22/76-池化

池化(最大池化层:选每个kernel中最大的数)

填充、步幅、多个通道:

池化层与卷积层类似,都具有填充和步幅。

没有可学习的参数。

在每个输入通道应用池化层以获得相应的输出通道。

输出通道数=输入通道数。

平均池化层(将最大池化层中的最大数替换为平均数)

总结:

池化层返回窗口中最大或平均值。

主要作用时缓解卷积层位置敏感性。

同样有窗口大小,填充,步幅作为超参数。

python 复制代码
import torch
from torch import nn

def pool2d(X, pool_size, mode='max'):
    X = X.float()
    p_h, p_w = pool_size
    Y = torch.zeros(X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y


X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print(pool2d(X, (2, 2)))

print(pool2d(X, (2, 2), 'avg'))

#填充和步幅

X = torch.arange(16, dtype=torch.float).view((1, 1, 4, 4))
print(X)

pool2d = nn.MaxPool2d(3)#只输出一个10,池化的窗口和步幅都是3,所以只输出一个值,不重叠
print(pool2d(X))

pool2d = nn.MaxPool2d(3, padding=1, stride=2)#手动调整
print(X)
print(pool2d(X))
#也可以指定非正方形的池化窗口,并分别指定高和宽上的填充和步幅。
pool2d = nn.MaxPool2d((2, 4), padding=(1, 2), stride=(2, 3))
print(pool2d(X))

#池化层对每个输入通道分别池化,而不是像卷积层那样将各通道的输入按通道相加。这意味着池化层的输出通道数与输入通道数相等。
X = torch.cat((X, X + 1), dim=1)
print(X)

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
print(pool2d(X))#输出还是2
相关推荐
有Li15 分钟前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
大唐荣华29 分钟前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能
即兴小索奇30 分钟前
AI应用商业化加速落地 2025智能体爆发与端侧创新成增长引擎
人工智能·搜索引擎·ai·商业·ai商业洞察·即兴小索奇
NeilNiu43 分钟前
开源AI工具Midscene.js
javascript·人工智能·开源
nju_spy1 小时前
机器学习 - Kaggle项目实践(4)Toxic Comment Classification Challenge 垃圾评论分类问题
人工智能·深度学习·自然语言处理·tf-idf·南京大学·glove词嵌入·双头gru
计算机sci论文精选1 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
ezl1fe1 小时前
RAG 每日一技(十八):手写SQL-RAG太累?LangChain的SQL智能体(Agent)前来救驾!
数据库·人工智能·后端
我星期八休息2 小时前
大模型 + 垂直场景:搜索/推荐/营销/客服领域开发新范式与技术实践
大数据·人工智能·python
飞哥数智坊2 小时前
等了这么久,企业微信的AI终于来了!
人工智能
Christo32 小时前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习