Spark—shell,Hbase—shell

Spark:

SPARK SQL

results = spark.sql( "SELECT * FROM people")

//读取JSON文件

val userScoreDF = spark.read.json("hdfs://master:9000/people.json")

Spark内置函数的使用

除select()外,还可以使用filter()、groupBy()等方法对DataFrame数据进行过滤和分组,比如:

df.select("name").show()

df.select("name","age"+1).show() //age列值增1

df.filter($"age">20).show()

df.groupBy("age").count().show()

使用spark处理数据之后写入hive表:

使用saveAsTable()方法可以将一个DataFrame写入到指定的Hive表中。例如,加载students表的数据并转为DataFrame,然后将DataFrame写入Hive表hive_records中,代码:

//加载students表的数据为

DataFrame val studentsDF = spark.table("students")

//将DataFrame写入表hive_records中 studentsDF.write.mode(SaveMode.Overwrite).saveAsTable("hive_records")

//查询hive_records表数据并显示到控制

spark.sql("SELECT * FROM hive_records").show()

Hbase:

新建:

#新建表table_name,并且设置三个列组

create 'table_name','f1','f2','f3'

增 :

#在表table_name的r1行f1:c1列中添加数据

put 'table_name' ,'f1:c1', 'hello world'

删:

先使表无效,然后删除表

endable/disenable #使表有效或无效

#删除表

drop 'table_name'

改:

#将第一行cf列组中的score数值改为99

put 'course','001','cf:score','99'

查:

#查看表结构

describe 'table_name'

列出所有建立的表的名字

list

#列出表所有相关内容

scan 'table_name'

#查看第r1行,f1列组,c1的值

get 'table_name' ,'r1','f1:c1'

#查看第r1行,f1列组,c1的值

get 'table_name','r1','f1:c3'

相关推荐
数据智研24 分钟前
【数据分享】腾格里沙漠空间矢量范围
大数据·信息可视化·数据分析
智能化咨询1 小时前
(68页PPT)埃森哲XX集团用户主数据治理项目汇报方案(附下载方式)
大数据·人工智能
爬山算法2 小时前
Redis(167)如何使用Redis实现分布式缓存?
redis·分布式·缓存
数据智研2 小时前
【数据分享】毛乌素沙地(毛乌素沙漠)空间矢量范围
大数据·人工智能·信息可视化·数据分析
NPE~2 小时前
面试高频——分布式事务详解
分布式·面试·职场和发展·程序员·事务·分布式事务
TinpeaV2 小时前
Elasticsearch8(ES)保姆级菜鸟入门教程
大数据·spring boot·elasticsearch·搜索引擎·全文检索·postman
西岭千秋雪_2 小时前
MySQL集群搭建
java·数据库·分布式·mysql
专注数据的痴汉2 小时前
「数据获取」江门统计年鉴(1997-2024)
大数据·人工智能·信息可视化
小王毕业啦3 小时前
2000-2023年 地级市-公路运输相关数据
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
Element_南笙3 小时前
吴恩达新课程:Agentic AI(笔记11)
大数据·人工智能·笔记·算法·机器学习