Spark—shell,Hbase—shell

Spark:

SPARK SQL

results = spark.sql( "SELECT * FROM people")

//读取JSON文件

val userScoreDF = spark.read.json("hdfs://master:9000/people.json")

Spark内置函数的使用

除select()外,还可以使用filter()、groupBy()等方法对DataFrame数据进行过滤和分组,比如:

df.select("name").show()

df.select("name","age"+1).show() //age列值增1

df.filter($"age">20).show()

df.groupBy("age").count().show()

使用spark处理数据之后写入hive表:

使用saveAsTable()方法可以将一个DataFrame写入到指定的Hive表中。例如,加载students表的数据并转为DataFrame,然后将DataFrame写入Hive表hive_records中,代码:

//加载students表的数据为

DataFrame val studentsDF = spark.table("students")

//将DataFrame写入表hive_records中 studentsDF.write.mode(SaveMode.Overwrite).saveAsTable("hive_records")

//查询hive_records表数据并显示到控制

spark.sql("SELECT * FROM hive_records").show()

Hbase:

新建:

#新建表table_name,并且设置三个列组

create 'table_name','f1','f2','f3'

增 :

#在表table_name的r1行f1:c1列中添加数据

put 'table_name' ,'f1:c1', 'hello world'

删:

先使表无效,然后删除表

endable/disenable #使表有效或无效

#删除表

drop 'table_name'

改:

#将第一行cf列组中的score数值改为99

put 'course','001','cf:score','99'

查:

#查看表结构

describe 'table_name'

列出所有建立的表的名字

list

#列出表所有相关内容

scan 'table_name'

#查看第r1行,f1列组,c1的值

get 'table_name' ,'r1','f1:c1'

#查看第r1行,f1列组,c1的值

get 'table_name','r1','f1:c3'

相关推荐
码农水水7 分钟前
京东Java面试被问:HTTP/2的多路复用和头部压缩实现
java·开发语言·分布式·http·面试·php·wpf
Francek Chen1 小时前
【大数据基础】大数据处理架构Hadoop:01 Hadoop概述
大数据·hadoop·分布式·架构
互联网科技看点2 小时前
诸葛io获认可:金融分析智能体赛道领航者
大数据·人工智能·金融
2301_800256113 小时前
全球气候与环境变化考试知识点梳理(1)
大数据·人工智能
edisao3 小时前
六、 读者高频疑问解答 & 架构价值延伸
大数据·开发语言·人工智能·科技·架构·php
-大头.3 小时前
GIT教程系列(共3篇)---------第二篇:Git高级协作与团队实战完全指南
大数据·git·elasticsearch
HXDGCL4 小时前
大会观察 | 破除创新链堵点:论“工厂直供”模式如何加速自动化核心部件迭代
大数据·人工智能·自动化·自动化生产线·环形导轨
五度易链-区域产业数字化管理平台4 小时前
五度易链企业数据服务架构思考:从“存数据”到“用数据”的全周期解决方案
大数据·人工智能·架构
OpenCSG5 小时前
提示词工程到AgenticOps:OpenCSG公益课
大数据·人工智能·开源·opencsg
EasyGBS5 小时前
EasyGBS的金融网点全场景智能可视化监管方案设计
大数据·人工智能