Spark—shell,Hbase—shell

Spark:

SPARK SQL

results = spark.sql( "SELECT * FROM people")

//读取JSON文件

val userScoreDF = spark.read.json("hdfs://master:9000/people.json")

Spark内置函数的使用

除select()外,还可以使用filter()、groupBy()等方法对DataFrame数据进行过滤和分组,比如:

df.select("name").show()

df.select("name","age"+1).show() //age列值增1

df.filter($"age">20).show()

df.groupBy("age").count().show()

使用spark处理数据之后写入hive表:

使用saveAsTable()方法可以将一个DataFrame写入到指定的Hive表中。例如,加载students表的数据并转为DataFrame,然后将DataFrame写入Hive表hive_records中,代码:

//加载students表的数据为

DataFrame val studentsDF = spark.table("students")

//将DataFrame写入表hive_records中 studentsDF.write.mode(SaveMode.Overwrite).saveAsTable("hive_records")

//查询hive_records表数据并显示到控制

spark.sql("SELECT * FROM hive_records").show()

Hbase:

新建:

#新建表table_name,并且设置三个列组

create 'table_name','f1','f2','f3'

增 :

#在表table_name的r1行f1:c1列中添加数据

put 'table_name' ,'f1:c1', 'hello world'

删:

先使表无效,然后删除表

endable/disenable #使表有效或无效

#删除表

drop 'table_name'

改:

#将第一行cf列组中的score数值改为99

put 'course','001','cf:score','99'

查:

#查看表结构

describe 'table_name'

列出所有建立的表的名字

list

#列出表所有相关内容

scan 'table_name'

#查看第r1行,f1列组,c1的值

get 'table_name' ,'r1','f1:c1'

#查看第r1行,f1列组,c1的值

get 'table_name','r1','f1:c3'

相关推荐
数据智能老司机14 小时前
CockroachDB权威指南——CockroachDB SQL
数据库·分布式·架构
数据智能老司机15 小时前
CockroachDB权威指南——开始使用
数据库·分布式·架构
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
数据智能老司机15 小时前
CockroachDB权威指南——CockroachDB 架构
数据库·分布式·架构
啊喜拔牙15 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
IT成长日记15 小时前
【Kafka基础】Kafka工作原理解析
分布式·kafka
别惊鹊16 小时前
MapReduce工作原理
大数据·mapreduce
8K超高清16 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
2401_8712905817 小时前
MapReduce 的工作原理
大数据·mapreduce
州周17 小时前
kafka副本同步时HW和LEO
分布式·kafka