PyTorch中的Eager模式

在 PyTorch 中,"Eager Execution"(即即时执行模式)是指一种动态图计算模式,其中每个操作都立即被执行,而不是被先放入计算图中。这与静态图计算框架(如 TensorFlow 的早期版本)的工作方式不同。在即时执行模式中,你可以像使用 NumPy 一样进行操作,逐步构建计算图,方便调试和交互。

一. Eager Execution 基本概念

1. 即时计算

在 Eager Execution 模式下,每个操作都会立即执行,而不是构建一个计算图。

2. 调试友好

Eager Execution 模式更加直观,更容易进行调试,因为可以像在传统编程中一样逐行执行代码。

3. 动态构建计算图

在 Eager 模式下,计算图是动态构建的,这意味着可以使用控制流结构(如 if 语句、循环等)而无需事先定义静态图。

二. Eager Execution 示例

在这个示例中,首先创建了两个张量 xy,然后进行了一些操作,最后计算了它们的平均值。在 Eager Execution 模式下,每个操作都会立即执行,而不需要构建静态图。最后,我们使用反向传播计算了梯度。

复制代码
import torch

# 启用 Eager Execution 模式
torch.set_grad_enabled(True)  # 默认情况下是开启的,这里仅为演示

# 创建两个张量
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)

# 执行操作
z = x + y
result = z.mean()

# 输出结果
print("x:", x)
print("y:", y)
print("z:", z)
print("result:", result)

# 反向传播
result.backward()

# 打印梯度
print("Gradient of x:", x.grad)
print("Gradient of y:", y.grad)

请注意,Eager Execution 模式在 PyTorch 1.0 版本之后成为默认行为,无需额外的设置。

相关推荐
心静财富之门5 分钟前
退出 for 循环,break和continue 语句
开发语言·python
WJSKad123513 分钟前
YOLO11-FDPN-DASI实现羽毛球拍与球的实时检测与识别研究
python
万行17 分钟前
机器学习&第四章支持向量机
人工智能·机器学习·支持向量机
幻云201021 分钟前
Next.js之道:从入门到精通
人工智能·python
0和1的舞者23 分钟前
GUI自动化测试详解(三):测试框架pytest完全指南
自动化测试·python·测试开发·自动化·pytest·测试
予枫的编程笔记26 分钟前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy28 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance28 分钟前
机器学习的一些基本知识
人工智能·机器学习
l1t32 分钟前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
大神君Bob39 分钟前
【AI办公自动化】教你使用Pytho让Word文档处理自动化
python