transfomer中Decoder和Encoder的base_layer的源码实现

简介

Encoder和Decoder共同组成transfomer,分别对应图中左右浅绿色框内的部分.

Encoder:

目的:将输入的特征图转换为一系列自注意力的输出。

工作原理:首先,通过卷积神经网络(CNN)提取输入图像的特征。然后,这些特征通过一系列自注意力的变换层进行处理,每个变换层都会将特征映射进行编码并产生一个新的特征映射。这个过程旨在捕捉图像中的空间和通道依赖关系。

作用:通过处理输入特征,提取图像特征并进行自注意力操作,为后续的目标检测任务提供必要的特征信息。

Decoder:

目的:接受Encoder的输出,并生成对目标类别和边界框的预测。

工作原理:首先,它接收Encoder的输出,然后使用一系列解码器层对目标对象之间的关系和全局图像上下文进行推理。这些解码器层将最终的目标类别和边界框的预测作为输出。

作用:基于Encoder的输出和全局上下文信息,生成目标类别和边界框的预测结果。
总结:Encoder就是特征提取类似卷积;Decoder用于生成box,类似head

源码实现:

Encoder 通常是6个encoder_layer组成,Decoder 通常是6个decoder_layer组成

我实现了核心的BaseTransformerLayer层,可以用来定义encoder_layer和decoder_layer

具体源码及其注释如下,配好环境可直接运行(运行依赖于上一个博客的代码):

cpp 复制代码
import torch
from torch import nn
from ZMultiheadAttention import MultiheadAttention  # 来自上一次写的attension


class FFN(nn.Module):
    def __init__(self,
                 embed_dim=256,
                 feedforward_channels=1024,
                 act_cfg='ReLU',
                 ffn_drop=0.,
                 ):
        super(FFN, self).__init__()
        self.l1 = nn.Linear(in_features=embed_dim, out_features=feedforward_channels)
        if act_cfg == 'ReLU':
            self.act1 = nn.ReLU(inplace=True)
        else:
            self.act1 = nn.SiLU(inplace=True)
        self.d1 = nn.Dropout(p=ffn_drop)
        self.l2 = nn.Linear(in_features=feedforward_channels, out_features=embed_dim)
        self.d2 = nn.Dropout(p=ffn_drop)

    def forward(self, x):
        tmp = self.d1(self.act1(self.l1(x)))
        tmp = self.d2(self.l2(tmp))
        x = tmp + x
        return x


# transfomer encode和decode的最小循环单元,用于打包self_attention或者cross_attention
class BaseTransformerLayer(nn.Module):
    def __init__(self,
                 attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],
                 fnn_cfg=dict(embed_dim=64, feedforward_channels=128, act_cfg='ReLU', ffn_drop=0.),
                 operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')):
        super(BaseTransformerLayer, self).__init__()
        self.attentions = nn.ModuleList()
        # 搭建att层
        for attn_cfg in attn_cfgs:
            self.attentions.append(MultiheadAttention(**attn_cfg))
        self.embed_dims = self.attentions[0].embed_dim

        # 统计norm数量 并搭建
        self.norms = nn.ModuleList()
        num_norms = operation_order.count('norm')
        for _ in range(num_norms):
            self.norms.append(nn.LayerNorm(normalized_shape=self.embed_dims))

        # 统计ffn数量 并搭建
        self.ffns = nn.ModuleList()
        self.ffns.append(FFN(**fnn_cfg))
        self.operation_order = operation_order

    def forward(self, query, key=None, value=None, query_pos=None, key_pos=None):
        attn_index = 0
        norm_index = 0
        ffn_index = 0
        for order in self.operation_order:
            if order == 'self_attn':
                temp_key = temp_value = query  # 不用担心三个值一样,在attention里面会重映射qkv
                query, attention = self.attentions[attn_index](
                    query,
                    temp_key,
                    temp_value,
                    query_pos=query_pos,
                    key_pos=query_pos)
                attn_index += 1
            elif order == 'cross_attn':
                query, attention = self.attentions[attn_index](
                    query,
                    key,
                    value,
                    query_pos=query_pos,
                    key_pos=key_pos)
                attn_index += 1
            elif order == 'norm':
                query = self.norms[norm_index](query)
                norm_index += 1
            elif order == 'ffn':
                query = self.ffns[ffn_index](query)
                ffn_index += 1
        return query


if __name__ == '__main__':
    query = torch.rand(size=(10, 2, 64))
    key = torch.rand(size=(5, 2, 64))
    value = torch.rand(size=(5, 2, 64))
    query_pos = torch.rand(size=(10, 2, 64))
    key_pos = torch.rand(size=(5, 2, 64))
    # encoder 通常是6个encoder_layer组成 每个encoder_layer['self_attn', 'norm', 'ffn', 'norm']
    encoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4)],
                                         fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',
                                                      ffn_drop=0.),
                                         operation_order=('self_attn', 'norm', 'ffn', 'norm'))

    encoder_layer_output = encoder_layer(query=query, query_pos=query_pos, key_pos=key_pos)

    # decoder 通常是6个decoder_layer组成 每个decoder_layer['self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm']
    decoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],
                                         fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',
                                                      ffn_drop=0.),
                                         operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm'))

    decoder_layer_output = decoder_layer(query=query, key=key, value=value, query_pos=query_pos, key_pos=key_pos)

    pass

具体流程说明:

Encoder 通常是6个encoder_layer组成,每个encoder_layer['self_attn', 'norm', 'ffn', 'norm']

Decoder 通常是6个decoder_layer组成,每个decoder_layer['self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm']

按照以上方式搭建网络即可

其中norm为LayerNorm,在样本内部进行归一化。

相关推荐
wfeqhfxz25887821 分钟前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰20 分钟前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技1 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_1 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1512 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai2 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205312 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟2 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战2 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战2 小时前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源