Flink学习

批处理和流处理的区别

批处理和流处理是数据处理的两种主要方式,它们在处理时间、数据量和处理方式上有一些不同。

处理时间:

批处理是在一段时间内收集的数据,然后进行处理,一般情况下,这些数据是静态的,处理完成后再进行下一次处理。

流处理则是实时(或者接近实时)处理数据,数据一进入系统就被处理,不需要等待整批数据都收集完毕再进行处理。

数据量:

批处理通常处理的数据量非常大,因为它需要等待一段时间内的数据收集完毕再进行处理。

流处理则可以处理较小的数据量,甚至单个事件,因为它实时处理数据,无需等待。

处理方式:

批处理通常一次处理所有数据,处理过程可能会耗费较长时间

但在处理大规模数据,如历史数据分析,统计等场景时非常合适

流处理则需要能够快速处理单个事件或数据,以保证实时性

适用于需要实时反馈的场景,如实时监控,实时推荐等

个人理解:一个注重时间,一个注重量级

Apache Flink是一个开源的大数据处理框架,可以进行批量数据处理和流数据处理。

在设计上,Flink具有高度的灵活性和健壮性,并且可以进行近乎实时的数据处理。

以下是Apache Flink的一些主要特性和优点:

  • 时间处理
    Flink具有内建的时间处理和周期事件生成函数,使得开发者可以更方便地进行时序数据的处理。
  • 状态管理
    Flink提供了强大的状态管理和容错机制,保证了数据处理的正确性和稳定性。
  • 高性能
    通过流处理和内存计算的方式,Flink可以大大提高数据处理的效率。
  • 丰富的API
    Flink提供了丰富的API,支持各种数据处理和计算需求,如批处理、流处理、图计算、机器学习等。
  • 可扩展性
    Flink支持大规模的数据处理任务,可以根据需要进行扩展。

总的来说,Apache Flink是一个功能强大、性能优秀的大数据处理框架,被广泛应用于大数据处理和分析的场景中。

相关推荐
ManageEngineITSM2 小时前
技术的秩序:IT资产与配置管理的现代重构
大数据·运维·数据库·重构·工单系统
一周困⁸天.4 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理4 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
Chloeis Syntax4 小时前
MySQL初阶学习日记(1)--- 数据库的基本操作
数据库·学习·mysql
musenh5 小时前
css样式学习
css·学习·css3
workflower5 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发
Larry_Yanan5 小时前
QML学习笔记(五十)QML与C++交互:QML中单例C++对象
开发语言·c++·笔记·qt·学习·ui·交互
im_AMBER5 小时前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
Nan_Shu_6146 小时前
学习:JavaScript(5)
开发语言·javascript·学习
民乐团扒谱机7 小时前
实验室安全教育与管理平台学习记录(八)特种设备安全
学习·安全