Flink学习

批处理和流处理的区别

批处理和流处理是数据处理的两种主要方式,它们在处理时间、数据量和处理方式上有一些不同。

处理时间:

批处理是在一段时间内收集的数据,然后进行处理,一般情况下,这些数据是静态的,处理完成后再进行下一次处理。

流处理则是实时(或者接近实时)处理数据,数据一进入系统就被处理,不需要等待整批数据都收集完毕再进行处理。

数据量:

批处理通常处理的数据量非常大,因为它需要等待一段时间内的数据收集完毕再进行处理。

流处理则可以处理较小的数据量,甚至单个事件,因为它实时处理数据,无需等待。

处理方式:

批处理通常一次处理所有数据,处理过程可能会耗费较长时间

但在处理大规模数据,如历史数据分析,统计等场景时非常合适

流处理则需要能够快速处理单个事件或数据,以保证实时性

适用于需要实时反馈的场景,如实时监控,实时推荐等

个人理解:一个注重时间,一个注重量级

Apache Flink是一个开源的大数据处理框架,可以进行批量数据处理和流数据处理。

在设计上,Flink具有高度的灵活性和健壮性,并且可以进行近乎实时的数据处理。

以下是Apache Flink的一些主要特性和优点:

  • 时间处理
    Flink具有内建的时间处理和周期事件生成函数,使得开发者可以更方便地进行时序数据的处理。
  • 状态管理
    Flink提供了强大的状态管理和容错机制,保证了数据处理的正确性和稳定性。
  • 高性能
    通过流处理和内存计算的方式,Flink可以大大提高数据处理的效率。
  • 丰富的API
    Flink提供了丰富的API,支持各种数据处理和计算需求,如批处理、流处理、图计算、机器学习等。
  • 可扩展性
    Flink支持大规模的数据处理任务,可以根据需要进行扩展。

总的来说,Apache Flink是一个功能强大、性能优秀的大数据处理框架,被广泛应用于大数据处理和分析的场景中。

相关推荐
先生沉默先1 小时前
Nginx 反向代理学习:单端口统一访问多服务
学习·nginx·arcgis
TDengine (老段)1 小时前
TDengine IDMP 重塑智慧水务运营(内附 Step by Step 步骤)
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
LFly_ice3 小时前
学习React-24-路由传参
前端·学习·react.js
陈天伟教授4 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长4 小时前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
萤丰信息5 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
fruge6 小时前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习
lingggggaaaa8 小时前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授9 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先9 小时前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws