Flink学习

批处理和流处理的区别

批处理和流处理是数据处理的两种主要方式,它们在处理时间、数据量和处理方式上有一些不同。

处理时间:

批处理是在一段时间内收集的数据,然后进行处理,一般情况下,这些数据是静态的,处理完成后再进行下一次处理。

流处理则是实时(或者接近实时)处理数据,数据一进入系统就被处理,不需要等待整批数据都收集完毕再进行处理。

数据量:

批处理通常处理的数据量非常大,因为它需要等待一段时间内的数据收集完毕再进行处理。

流处理则可以处理较小的数据量,甚至单个事件,因为它实时处理数据,无需等待。

处理方式:

批处理通常一次处理所有数据,处理过程可能会耗费较长时间

但在处理大规模数据,如历史数据分析,统计等场景时非常合适

流处理则需要能够快速处理单个事件或数据,以保证实时性

适用于需要实时反馈的场景,如实时监控,实时推荐等

个人理解:一个注重时间,一个注重量级

Apache Flink是一个开源的大数据处理框架,可以进行批量数据处理和流数据处理。

在设计上,Flink具有高度的灵活性和健壮性,并且可以进行近乎实时的数据处理。

以下是Apache Flink的一些主要特性和优点:

  • 时间处理
    Flink具有内建的时间处理和周期事件生成函数,使得开发者可以更方便地进行时序数据的处理。
  • 状态管理
    Flink提供了强大的状态管理和容错机制,保证了数据处理的正确性和稳定性。
  • 高性能
    通过流处理和内存计算的方式,Flink可以大大提高数据处理的效率。
  • 丰富的API
    Flink提供了丰富的API,支持各种数据处理和计算需求,如批处理、流处理、图计算、机器学习等。
  • 可扩展性
    Flink支持大规模的数据处理任务,可以根据需要进行扩展。

总的来说,Apache Flink是一个功能强大、性能优秀的大数据处理框架,被广泛应用于大数据处理和分析的场景中。

相关推荐
雪兽软件11 分钟前
“大数据”能提供什么帮助?
大数据
我命由我1234514 分钟前
Python Flask 开发问题:ImportError: cannot import name ‘Markup‘ from ‘flask‘
开发语言·后端·python·学习·flask·学习方法·python3.11
事变天下16 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
大刘讲IT19 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
wang_yb22 分钟前
掌握相关性分析:读懂数据间的“悄悄话”
大数据·databook
企业智能研究41 分钟前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析
全栈陈序员1 小时前
【Python】基础语法入门(二十)——项目实战:从零构建命令行 To-Do List 应用
开发语言·人工智能·python·学习
Elastic 中国社区官方博客1 小时前
Elasticsearch:你是说,用于混合搜索(hybrid search)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
生信学习小达人1 小时前
群体遗传学之遗传漂变
大数据
AA陈超1 小时前
枚举类 `ETriggerEvent`
开发语言·c++·笔记·学习·ue5