Flink学习

批处理和流处理的区别

批处理和流处理是数据处理的两种主要方式,它们在处理时间、数据量和处理方式上有一些不同。

处理时间:

批处理是在一段时间内收集的数据,然后进行处理,一般情况下,这些数据是静态的,处理完成后再进行下一次处理。

流处理则是实时(或者接近实时)处理数据,数据一进入系统就被处理,不需要等待整批数据都收集完毕再进行处理。

数据量:

批处理通常处理的数据量非常大,因为它需要等待一段时间内的数据收集完毕再进行处理。

流处理则可以处理较小的数据量,甚至单个事件,因为它实时处理数据,无需等待。

处理方式:

批处理通常一次处理所有数据,处理过程可能会耗费较长时间

但在处理大规模数据,如历史数据分析,统计等场景时非常合适

流处理则需要能够快速处理单个事件或数据,以保证实时性

适用于需要实时反馈的场景,如实时监控,实时推荐等

个人理解:一个注重时间,一个注重量级

Apache Flink是一个开源的大数据处理框架,可以进行批量数据处理和流数据处理。

在设计上,Flink具有高度的灵活性和健壮性,并且可以进行近乎实时的数据处理。

以下是Apache Flink的一些主要特性和优点:

  • 时间处理
    Flink具有内建的时间处理和周期事件生成函数,使得开发者可以更方便地进行时序数据的处理。
  • 状态管理
    Flink提供了强大的状态管理和容错机制,保证了数据处理的正确性和稳定性。
  • 高性能
    通过流处理和内存计算的方式,Flink可以大大提高数据处理的效率。
  • 丰富的API
    Flink提供了丰富的API,支持各种数据处理和计算需求,如批处理、流处理、图计算、机器学习等。
  • 可扩展性
    Flink支持大规模的数据处理任务,可以根据需要进行扩展。

总的来说,Apache Flink是一个功能强大、性能优秀的大数据处理框架,被广泛应用于大数据处理和分析的场景中。

相关推荐
悠哉悠哉愿意1 分钟前
【智能系统项目开发与学习记录】bringup功能包详解
学习·机器人·ros2
IT毕设梦工厂9 分钟前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
半夏知半秋20 分钟前
skynet.newservice接口分析
笔记·后端·学习·安全架构
数在表哥35 分钟前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能
我的xiaodoujiao43 分钟前
从 0 到 1 搭建 Python 语言 Web UI自动化测试学习系列 15--二次开发--封装公共方法 3
python·学习·测试工具
爱思德学术44 分钟前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
立志成为大牛的小牛1 小时前
数据结构——十四、构造二叉树(王道408)
数据结构·笔记·学习·程序人生·考研
RanceGru1 小时前
LLM学习笔记5——本地部署ComfyUI和Wan2.1-T2V-1.3B文生视频模型
笔记·学习·stable diffusion·transformer
molong9312 小时前
Activity/Service/Broadcast/ContentProvider 生命周期交互
android·学习·交互
楼田莉子2 小时前
python学习:爬虫+项目测试
后端·爬虫·python·学习