无监督学习 - t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)

什么是机器学习

t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)是一种非线性降维技术,用于将高维数据映射到低维空间,以便更好地可视化数据的结构。t-SNE主要用于聚类分析和可视化高维数据的相似性结构,特别是在探索复杂数据集时非常有用。

t-SNE的基本原理

  1. 相似度测量: 对于高维数据中的每一对数据点,计算它们之间的相似度。通常使用高斯核函数来度量相似度。
  2. 学习相似度分布 : 使用 t-分布来学习数据点之间的相似度分布。t-分布具有厚尾特性,能够更好地保留相对较远数据点的相对距离。
  3. 在低维空间中映射: 在低维空间中随机初始化每个数据点的投影,并通过梯度下降来优化这些点的位置,使得它们的相似度分布在高维和低维空间中尽量相似。

t-SNE的特点

  1. 保留局部结构t-SNE更倾向于保留数据的局部结构,即相似的数据点在低维空间中仍然保持相近。
  2. 对异常值敏感t-SNE对异常值(相对于高维空间)较为敏感,可能导致异常值在降维后的结果中占据较大空间。

Python中使用scikit-learn进行t-SNE的简单示例:

python 复制代码
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt

# 生成随机高维数据集
np.random.seed(42)
data = np.random.rand(100, 10)

# 使用t-SNE进行降维
tsne = TSNE(n_components=2, perplexity=30, random_state=42)
embedded_data = tsne.fit_transform(data)

# 绘制t-SNE降维后的结果
plt.scatter(embedded_data[:, 0], embedded_data[:, 1])
plt.title('t-SNE Visualization')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.show()

这个例子中,t-SNE被用于将高维数据映射到二维空间,以便进行可视化。在实际应用中,可以根据数据集的特点调整t-SNE的参数,如perplexity等。需要注意的是,t-SNE的计算开销较大,特别是在处理大规模数据时,可能需要一些时间。

相关推荐
宇木灵5 小时前
C语言基础学习-二、运算符
c语言·开发语言·学习
weixin_458872615 小时前
东华复试OJ每日3题打卡·复盘91~93
学习
gorgeous(๑>؂<๑)5 小时前
【ICLR26-金玥明-新国立】MedAgent-Pro:通过推理智能体工作流实现基于证据的多模态医疗诊断
人工智能
hqyjzsb5 小时前
企业AI人才库的搭建体系与长效运营管理方案
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·改行学it
码农小韩6 小时前
AIAgent应用开发——大模型理论基础与应用(五)
人工智能·python·提示词工程·aiagent
拔刀能留住落樱吗、6 小时前
AI 落地避坑实战(2026 最新):200 + 项目复盘,数据 + 方案 + 代码思路,少亏 50 万
人工智能
龙山云仓6 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
Dcs6 小时前
花 200 美刀买“黑盒”?Claude Code 这波更新,把程序员当傻子了吧…
人工智能·ai编程·claude
sensen_kiss6 小时前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析
Mr_Lucifer6 小时前
成本大幅降低、Agent效率显著提升:CodeFlicker 接入 MiniMax M2.5 与 GLM-5
人工智能·ai编程·产品