无监督学习 - t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)

什么是机器学习

t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)是一种非线性降维技术,用于将高维数据映射到低维空间,以便更好地可视化数据的结构。t-SNE主要用于聚类分析和可视化高维数据的相似性结构,特别是在探索复杂数据集时非常有用。

t-SNE的基本原理

  1. 相似度测量: 对于高维数据中的每一对数据点,计算它们之间的相似度。通常使用高斯核函数来度量相似度。
  2. 学习相似度分布 : 使用 t-分布来学习数据点之间的相似度分布。t-分布具有厚尾特性,能够更好地保留相对较远数据点的相对距离。
  3. 在低维空间中映射: 在低维空间中随机初始化每个数据点的投影,并通过梯度下降来优化这些点的位置,使得它们的相似度分布在高维和低维空间中尽量相似。

t-SNE的特点

  1. 保留局部结构t-SNE更倾向于保留数据的局部结构,即相似的数据点在低维空间中仍然保持相近。
  2. 对异常值敏感t-SNE对异常值(相对于高维空间)较为敏感,可能导致异常值在降维后的结果中占据较大空间。

Python中使用scikit-learn进行t-SNE的简单示例:

python 复制代码
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt

# 生成随机高维数据集
np.random.seed(42)
data = np.random.rand(100, 10)

# 使用t-SNE进行降维
tsne = TSNE(n_components=2, perplexity=30, random_state=42)
embedded_data = tsne.fit_transform(data)

# 绘制t-SNE降维后的结果
plt.scatter(embedded_data[:, 0], embedded_data[:, 1])
plt.title('t-SNE Visualization')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.show()

这个例子中,t-SNE被用于将高维数据映射到二维空间,以便进行可视化。在实际应用中,可以根据数据集的特点调整t-SNE的参数,如perplexity等。需要注意的是,t-SNE的计算开销较大,特别是在处理大规模数据时,可能需要一些时间。

相关推荐
葫三生44 分钟前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程5 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li5 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董5 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion7 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周7 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
sealaugh328 小时前
aws(学习笔记第四十八课) appsync-graphql-dynamodb
笔记·学习·aws