无监督学习 - t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)

什么是机器学习

t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)是一种非线性降维技术,用于将高维数据映射到低维空间,以便更好地可视化数据的结构。t-SNE主要用于聚类分析和可视化高维数据的相似性结构,特别是在探索复杂数据集时非常有用。

t-SNE的基本原理

  1. 相似度测量: 对于高维数据中的每一对数据点,计算它们之间的相似度。通常使用高斯核函数来度量相似度。
  2. 学习相似度分布 : 使用 t-分布来学习数据点之间的相似度分布。t-分布具有厚尾特性,能够更好地保留相对较远数据点的相对距离。
  3. 在低维空间中映射: 在低维空间中随机初始化每个数据点的投影,并通过梯度下降来优化这些点的位置,使得它们的相似度分布在高维和低维空间中尽量相似。

t-SNE的特点

  1. 保留局部结构t-SNE更倾向于保留数据的局部结构,即相似的数据点在低维空间中仍然保持相近。
  2. 对异常值敏感t-SNE对异常值(相对于高维空间)较为敏感,可能导致异常值在降维后的结果中占据较大空间。

Python中使用scikit-learn进行t-SNE的简单示例:

python 复制代码
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt

# 生成随机高维数据集
np.random.seed(42)
data = np.random.rand(100, 10)

# 使用t-SNE进行降维
tsne = TSNE(n_components=2, perplexity=30, random_state=42)
embedded_data = tsne.fit_transform(data)

# 绘制t-SNE降维后的结果
plt.scatter(embedded_data[:, 0], embedded_data[:, 1])
plt.title('t-SNE Visualization')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.show()

这个例子中,t-SNE被用于将高维数据映射到二维空间,以便进行可视化。在实际应用中,可以根据数据集的特点调整t-SNE的参数,如perplexity等。需要注意的是,t-SNE的计算开销较大,特别是在处理大规模数据时,可能需要一些时间。

相关推荐
苏渡苇4 分钟前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring
大熊背5 分钟前
APEX系统中为什么 不用与EV0的差值计算曝光参数调整量
人工智能·算法·apex·自动曝光
小雨中_8 分钟前
2.4 贝尔曼方程与蒙特卡洛方法
人工智能·python·深度学习·机器学习·自然语言处理
Chiang_Yuhsin11 分钟前
【程序人生-Hello‘s P2P】
人工智能
大闲在人27 分钟前
传统软件工程在 AI 时代急需改进的四个核心维度
人工智能·软件工程
CappuccinoRose38 分钟前
CSS 语法学习文档(十五)
前端·学习·重构·渲染·浏览器
qyresearch_43 分钟前
机动休闲艇产业:技术革新与消费升级驱动下的全球市场新格局
人工智能
湘-枫叶情缘1 小时前
从数据库写作到情绪工程:网络文学工程化转向的理论综述
数据库·人工智能
heimeiyingwang1 小时前
企业非结构化数据的 AI 处理与价值挖掘
大数据·数据库·人工智能·机器学习·架构
开开心心就好1 小时前
轻松鼠标连, 自定义区域模仿人手点击
人工智能·windows·物联网·计算机视觉·计算机外设·ocr·excel