无监督学习 - t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)

什么是机器学习

t-分布邻域嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)是一种非线性降维技术,用于将高维数据映射到低维空间,以便更好地可视化数据的结构。t-SNE主要用于聚类分析和可视化高维数据的相似性结构,特别是在探索复杂数据集时非常有用。

t-SNE的基本原理

  1. 相似度测量: 对于高维数据中的每一对数据点,计算它们之间的相似度。通常使用高斯核函数来度量相似度。
  2. 学习相似度分布 : 使用 t-分布来学习数据点之间的相似度分布。t-分布具有厚尾特性,能够更好地保留相对较远数据点的相对距离。
  3. 在低维空间中映射: 在低维空间中随机初始化每个数据点的投影,并通过梯度下降来优化这些点的位置,使得它们的相似度分布在高维和低维空间中尽量相似。

t-SNE的特点

  1. 保留局部结构t-SNE更倾向于保留数据的局部结构,即相似的数据点在低维空间中仍然保持相近。
  2. 对异常值敏感t-SNE对异常值(相对于高维空间)较为敏感,可能导致异常值在降维后的结果中占据较大空间。

Python中使用scikit-learn进行t-SNE的简单示例:

python 复制代码
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt

# 生成随机高维数据集
np.random.seed(42)
data = np.random.rand(100, 10)

# 使用t-SNE进行降维
tsne = TSNE(n_components=2, perplexity=30, random_state=42)
embedded_data = tsne.fit_transform(data)

# 绘制t-SNE降维后的结果
plt.scatter(embedded_data[:, 0], embedded_data[:, 1])
plt.title('t-SNE Visualization')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.show()

这个例子中,t-SNE被用于将高维数据映射到二维空间,以便进行可视化。在实际应用中,可以根据数据集的特点调整t-SNE的参数,如perplexity等。需要注意的是,t-SNE的计算开销较大,特别是在处理大规模数据时,可能需要一些时间。

相关推荐
m0_742848887 分钟前
机器学习3
人工智能·深度学习·机器学习
咔叽布吉9 分钟前
【前端学习笔记】ES6 新特性
前端·笔记·学习
超越✔11 分钟前
学习内容分享
笔记·学习·面试
B站计算机毕业设计超人18 分钟前
计算机毕业设计Python+大模型美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js
大数据·爬虫·python·深度学习·机器学习·课程设计·推荐算法
Lostgreen24 分钟前
SQL on Hadoop
数据库·hadoop·笔记·分布式·sql·学习
使者大牙26 分钟前
【单点知识】基于PyTorch进行模型部署
人工智能·pytorch·python·深度学习
int WINGsssss32 分钟前
对pytorch的底层nccl库进行插桩
人工智能·pytorch·python
美狐美颜sdk39 分钟前
直播实时美颜平台开发详解:基于视频美颜SDK的技术路径
人工智能·计算机视觉·音视频·第三方美颜sdk·美狐美颜sdk
qq_1893704942 分钟前
鸢尾花Iris训练数据和测试数据的分割和训练数据的散点图矩阵绘制
python·线性代数·机器学习·散点图矩阵
SaNDJie1 小时前
24.11.26 神经网络 参数初始化
大数据·人工智能·神经网络