算法通关村第十四关—数据流的中位数(黄金)

数据流中中位数的问题

LeetCode295,中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如:[2,3,4]的中位数是3

2,3\]的中位数是(2+3)/2=2.5 实现 MedianFinder 类: * MedianFinder() 初始化 MedianFinder 对象。 * void addNum(int num) 将数据流中的整数 num 添加到数据结构中。 * double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。 ![image.png](https://file.jishuzhan.net/article/1748246899825053698/b7bdb0c9db8eadfd7f4f97632e23e1a6.webp)  分析这是一道比较难的题目了,如果没专门学过,很难在面试时想到。  中位数的题,我们一般都可以用大顶堆+小顶堆来求解,下面我们通过直观的例子解释一下怎么做。 小顶堆(minHeap):存储所有元素中较大的一半,堆顶存储的是其中最小的数。 大顶堆(maxHeap):存储所有元素中较小的一半,堆顶存储的是其中最大的数。  相当于,把所有元素分成了大和小两半,而我们计算中位数,只需要大的那半的最小值和小的那半的最大值即可。比如,我们依次添加\[1,2,3,4,5\],砍成两半之后为\[1,2\]和\[3,4,5\],我们只要能快速的找到2和3即可。  下面看看使用两个堆它们是怎么变化的: 1.添加1,进入到minHeap中,中位数为1:![截屏2024-01-15 07.27.57.png](https://file.jishuzhan.net/article/1748246899825053698/d9317ef20bd61724017e5f71cd8c8b1f.webp) 2.添加2,它比minHeap堆顶元素1大,进入minHeap,同时,minHeap中元素超过了所有元素总和的一半,所以,要平衡一下,分一个给maxHeap,中位数为(1+2)/2.0=1.5:![截屏2024-01-15 07.28.05.png](https://file.jishuzhan.net/article/1748246899825053698/9a05ea8b3f7dd37e8efe4a4c79cea033.webp) 添加3,它比minHeap堆顶元素2大,进入minHeap,中位数为2:![截屏2024-01-15 07.28.13.png](https://file.jishuzhan.net/article/1748246899825053698/e049eab7e918a232a4c1b4b3200920ef.webp) 添加4,它比minHeap堆顶元素2大,进入minHeap,同时,minHeap中元素超过了所有元素总和的一半,所以,要平衡一下,分一个给maxHeap,中位数为(2+3)/2.0=2.5:![截屏2024-01-15 07.28.33.png](https://file.jishuzhan.net/article/1748246899825053698/6cf87860a33db4a588b929a896440e84.webp) 5.添加5,它比minHeap堆J顶元素3大,进入minHeap,中位数为3:![截屏2024-01-15 07.28.40.png](https://file.jishuzhan.net/article/1748246899825053698/9630c17c7f8188895dab7bc3f6bc94a0.webp)  Java中的堆(即优先级队列)是使用完全二叉树实现的,我们这里的图也是以完全二叉树为例。理解了上述的过程,看代码就比较简单了  代码如下 ```java class MedianFinder { PriorityQueue queleft; PriorityQueue queright; public MedianFinder() { queleft = new PriorityQueue((a, b) -> (b - a));//中位数左边是大顶堆 queright = new PriorityQueue();//中位数右边是小顶堆 } public void addNum(int num) { //添加元素 if(queleft.isEmpty() || num <= queleft.peek()){ queleft.offer(num); if(queleft.size() > queright.size() + 1){ //queleft最多比queright多一个元素 queright.offer(queleft.poll()); } } else{ queright.offer(num); if(queright.size() > queleft.size()){ queleft.offer(queright.poll()); } } } public double findMedian() { if(queleft.size() > queright.size()){//奇数情况 return 1.0 * queleft.peek(); } else return (queleft.peek() + queright.peek()) / 2.0; } } ```

相关推荐
Tanecious.4 分钟前
机器视觉--python基础语法
开发语言·python
叠叠乐10 分钟前
rust Send Sync 以及对象安全和对象不安全
开发语言·安全·rust
想跑步的小弱鸡10 分钟前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
战族狼魂40 分钟前
CSGO 皮肤交易平台后端 (Spring Boot) 代码结构与示例
java·spring boot·后端
Tttian6222 小时前
Python办公自动化(3)对Excel的操作
开发语言·python·excel
xyliiiiiL2 小时前
ZGC初步了解
java·jvm·算法
杉之2 小时前
常见前端GET请求以及对应的Spring后端接收接口写法
java·前端·后端·spring·vue
爱的叹息2 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
hycccccch3 小时前
Canal+RabbitMQ实现MySQL数据增量同步
java·数据库·后端·rabbitmq
独好紫罗兰3 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法