聚类模型评估指标

聚类模型评估指标-轮廓系数

  1. 计算样本i到同簇其它样本到平均距离ai,ai越小,说明样本i越应该被聚类到该簇(将ai称为样本i到簇内不相似度);
  2. 计算样本i到其它某簇Cj的所有样本的平均距离bij,称为样本i与簇Cj的不相似度。定义为样本i的簇间不相似度:bi=min(bi1,bi2,...,bik2);
    说明:
    • si接近1,则说明样本i聚类合理;
    • si接近-1,则说明样本i更应该分类到另外的簇;
    若si近似为0,则说明样本i在两个簇的边界上;
相关推荐
wearegogog1236 小时前
负荷聚类及其在MATLAB中的实现
matlab·php·聚类
茗创科技8 小时前
Annals of Neurology | EEG‘藏宝图’:用于脑电分类、聚类与预测的语义化低维流形
分类·数据挖掘·聚类
云青黛3 天前
肘部法找k
人工智能·算法·机器学习·聚类
Gitpchy3 天前
Day 18 推断聚类后簇的类型
python·机器学习·聚类
Freya冉冉4 天前
【PYTHON学习】推断聚类后簇的类型DAY18
python·学习·聚类
十三画者6 天前
【文献分享】通过基于大型语言模型嵌入的蛋白质的 k 均值聚类来探索同源性检测
均值算法·语言模型·聚类
做科研的周师兄8 天前
中国逐日格点降水数据集V2(1960–2024,0.1°)
人工智能·学习·机器学习·支持向量机·聚类
PKNLP12 天前
聚类之KMeans
机器学习·kmeans·聚类
小喵要摸鱼12 天前
【机器学习】无监督学习 —— K-Means 聚类、DBSCAN 聚类
机器学习·kmeans·聚类·dbscan
七芒星202313 天前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类