【论文阅读】Can Large Language Models Empower Molecular Property Prediction?

文章目录

0、基本信息

1、研究动机

分子属性预测得到巨大的关注,分子图能够被描述为图结构的数据或SMILES (Simplified Molecular-Input Line-Entry System)文本。LLMs的快速发展给NLP领域带来颠覆性变化,但是,LLM如何影响分子性质预测的探索仍处于早期阶段。

本文,从两个视角------零样本和少样本分子分类,通过LLMs生成分子原始SMILESD的新解释。

  • 首先提示LLM进行上下文分子分类并评估其性能。
  • 然后,我们使用LLM为原始SMILES生成语义丰富的分析和解释。文本解释可以作为分子的新表征。
  • 最后,利用它来微调多个下游任务的小规模LM模型

2、创新性

由于分子可以表示为SMILES序列,因此使用具有强大文本理解能力的LLM来处理分子数据是一个不错的想法。简而言之,大模型在分子预测任务上的迁移。

例如,对于给定分子的SMILES,ChatGPT可以准确地描述分子的功能组、化学性质和潜在的药物应用。如下图所示。

基本思想:

对于所给的SMILES序列,设计合理的提示,提示LLM进行zero/few-shot 分类,并总结出新的表征,即Caption as new Representation,用新的表征在下游任务上微调小规模LMs。

3、方法论

情境学习(ICL)已经成为NLP的新范式。使用包含以自然语言模板编写的多个示例作为输入的上下文,LLM可以对未看到的输入进预测,而不需要额外的参数更新。利用ChatGPT的ICL能力,通过设计的提示来帮助分子分类任务,如下图所示。

这种模式使得通过改变演示和模板将人类知识融入LLM变得更加容易。

在PTC数据集上,使用"毒性"、"癌症"和"有害"等术语进行关键字搜索,以检索ChatGPT为原始SMILES格式PTC数据集生成的所有解释。值得注意的是,观察到这些关键字中的大多数主要出现在标记为-1的条目中。这表明ChatGPT能够为原始SMILES字符串提供有意义和独特的专业解释,从而使下游任务受益。

总之,利用ChatGPT来理解原始SMILES字符串并生成包含各个方面的文本描述;然后,微调预训练的小规模LM用于各种下游任务,例如分子分类和性质预测。

4、实验结果

ChatGPT具有一定水平的少样本分子分类能力。然而,在整个实验中,发现ChatGPT的分类性能并不一致,对于相同的提示,不同的提示也有显着的影响的结果。因此,设计有效的提示,并聚合合理的先验信息实现更好的零样本和少样本分类至关重要的.

相关推荐
字节数据平台1 分钟前
一客一策:Data Agent 如何重构大模型时代的智能营销
大数据·人工智能·重构
机器之心20 分钟前
字节Seedream 4.0将全量开放!抢先评测来了,我们摸索出AI生图一大波「邪修」玩法
人工智能·openai
空白到白23 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
水凌风里24 分钟前
4.4 机器学习 - 集成学习
人工智能·机器学习·集成学习
雲_kumo24 分钟前
集成学习:从理论到实践的全面解析
人工智能·机器学习·集成学习
用户51914958484533 分钟前
30条顶级APT与蓝队攻防单行命令:网络战场终极对决
人工智能·aigc
双向3334 分钟前
AI 辅助文档生成:从接口注释到自动化 API 文档上线
人工智能
CoovallyAIHub1 小时前
SBP-YOLO:面向嵌入式悬架的轻量实时模型,实现减速带与坑洼高精度检测
深度学习·算法·计算机视觉
算法打盹中1 小时前
基于树莓派与Jetson Nano集群的实验边缘设备上视觉语言模型(VLMs)的性能评估与实践探索
人工智能·计算机视觉·语言模型·自然语言处理·树莓派·多模态·jetson nano