【算法详解】力扣69.x的平方根

一、题目描述

力扣链接:力扣69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

二、思路分析

可以使用二分查找法来逼近一个数的平方根

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        int left = 0, right = x, result = 0;

        while (left <= right) {
            int mid = (left + right) >> 1;

            if ((long long)mid * mid <= x) {
                result = mid;
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return result;
    }
};

牛顿迭代法是一种用于寻找方程根的数值方法,它可以用来求解平方根。对于求解方程 f(x) = 0,牛顿迭代法的迭代公式为:

x n + 1 = x n − f ( x n ) f ' ( x n ) x_{n+1}=x_{n}-\frac{f(x_n)}{f^`(x_n)} xn+1=xn−f'(xn)f(xn)

对于求解 x = 0 \sqrt{x}=0 x =0,则可以令 f ( x ) = x 2 − a f(x)=x^2-a f(x)=x2−a其中 a 是要求平方根的非负整数。

那么迭代公式就变为:

x n + 1 = 0.5 ∗ ( x n + f ( x n ) f ' ( x n ) ) x_{n+1}=0.5*(x_{n}+\frac{f(x_n)}{f^`(x_n)}) xn+1=0.5∗(xn+f'(xn)f(xn))

那么可以写出C++代码

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        if (x == 0 || x == 1) {
            return x;
        }

        double result = x;
        double epsilon = 1e-6;

        while (fabs(result * result - x) > epsilon) {
            result = 0.5 * (result + x / result);
        }
        return static_cast<int>(result);
    }
};
相关推荐
AI 嗯啦6 分钟前
计算机的排序方法
数据结构·算法·排序算法
l12345sy19 分钟前
Day23_【机器学习—聚类算法—K-Means聚类 及评估指标SSE、SC、CH】
算法·机器学习·kmeans·聚类·sse·sc·ch
_Coin_-32 分钟前
算法训练营DAY58 第十一章:图论part08
数据结构·算法·图论
scx201310041 小时前
P13929 [蓝桥杯 2022 省 Java B] 山 题解
c++·算法·蓝桥杯·洛谷
YC运维1 小时前
Ansible题目全解析与答案
java·算法·ansible
小欣加油2 小时前
leetcode 912 排序数组(归并排序)
数据结构·c++·算法·leetcode·排序算法
山河君3 小时前
webrtc之高通滤波——HighPassFilter源码及原理分析
算法·音视频·webrtc·信号处理
星辰大海的精灵3 小时前
SpringBoot与Quartz整合,实现订单自动取消功能
java·后端·算法
data myth3 小时前
力扣1210. 穿过迷宫的最少移动次数 详解
算法·leetcode·职场和发展
惯导马工3 小时前
【论文导读】AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Gene
深度学习·算法