【算法详解】力扣69.x的平方根

一、题目描述

力扣链接:力扣69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

二、思路分析

可以使用二分查找法来逼近一个数的平方根

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        int left = 0, right = x, result = 0;

        while (left <= right) {
            int mid = (left + right) >> 1;

            if ((long long)mid * mid <= x) {
                result = mid;
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return result;
    }
};

牛顿迭代法是一种用于寻找方程根的数值方法,它可以用来求解平方根。对于求解方程 f(x) = 0,牛顿迭代法的迭代公式为:

x n + 1 = x n − f ( x n ) f ' ( x n ) x_{n+1}=x_{n}-\frac{f(x_n)}{f^`(x_n)} xn+1=xn−f'(xn)f(xn)

对于求解 x = 0 \sqrt{x}=0 x =0,则可以令 f ( x ) = x 2 − a f(x)=x^2-a f(x)=x2−a其中 a 是要求平方根的非负整数。

那么迭代公式就变为:

x n + 1 = 0.5 ∗ ( x n + f ( x n ) f ' ( x n ) ) x_{n+1}=0.5*(x_{n}+\frac{f(x_n)}{f^`(x_n)}) xn+1=0.5∗(xn+f'(xn)f(xn))

那么可以写出C++代码

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        if (x == 0 || x == 1) {
            return x;
        }

        double result = x;
        double epsilon = 1e-6;

        while (fabs(result * result - x) > epsilon) {
            result = 0.5 * (result + x / result);
        }
        return static_cast<int>(result);
    }
};
相关推荐
得物技术16 小时前
得物管理类目配置线上化:从业务痛点到技术实现
后端·算法·数据分析
CoovallyAIHub16 小时前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
熬了夜的程序员16 小时前
【LeetCode】101. 对称二叉树
算法·leetcode·链表·职场和发展·矩阵
却道天凉_好个秋17 小时前
目标检测算法与原理(二):Tensorflow实现迁移学习
算法·目标检测·tensorflow
柳鲲鹏18 小时前
RGB转换为NV12,查表式算法
linux·c语言·算法
橘颂TA18 小时前
【剑斩OFFER】算法的暴力美学——串联所有单词的字串
数据结构·算法·c/c++
Kuo-Teng18 小时前
LeetCode 73: Set Matrix Zeroes
java·算法·leetcode·职场和发展
mit6.82418 小时前
[HDiffPatch] 补丁算法 | `patch_decompress_with_cache` | `getStreamClip` | RLE游程编码
c++·算法
程序猿202318 小时前
Python每日一练---第六天:罗马数字转整数
开发语言·python·算法