【算法详解】力扣69.x的平方根

一、题目描述

力扣链接:力扣69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

二、思路分析

可以使用二分查找法来逼近一个数的平方根

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        int left = 0, right = x, result = 0;

        while (left <= right) {
            int mid = (left + right) >> 1;

            if ((long long)mid * mid <= x) {
                result = mid;
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return result;
    }
};

牛顿迭代法是一种用于寻找方程根的数值方法,它可以用来求解平方根。对于求解方程 f(x) = 0,牛顿迭代法的迭代公式为:

x n + 1 = x n − f ( x n ) f ' ( x n ) x_{n+1}=x_{n}-\frac{f(x_n)}{f^`(x_n)} xn+1=xn−f'(xn)f(xn)

对于求解 x = 0 \sqrt{x}=0 x =0,则可以令 f ( x ) = x 2 − a f(x)=x^2-a f(x)=x2−a其中 a 是要求平方根的非负整数。

那么迭代公式就变为:

x n + 1 = 0.5 ∗ ( x n + f ( x n ) f ' ( x n ) ) x_{n+1}=0.5*(x_{n}+\frac{f(x_n)}{f^`(x_n)}) xn+1=0.5∗(xn+f'(xn)f(xn))

那么可以写出C++代码

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        if (x == 0 || x == 1) {
            return x;
        }

        double result = x;
        double epsilon = 1e-6;

        while (fabs(result * result - x) > epsilon) {
            result = 0.5 * (result + x / result);
        }
        return static_cast<int>(result);
    }
};
相关推荐
今天背单词了吗9806 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
jdlxx_dongfangxing7 小时前
进制转换算法详解及应用
算法
why技术8 小时前
也是出息了,业务代码里面也用上算法了。
java·后端·算法
2501_922895588 小时前
字符函数和字符串函数(下)- 暴力匹配算法
算法
IT信息技术学习圈9 小时前
算法核心知识复习:排序算法对比 + 递归与递推深度解析(根据GESP四级题目总结)
算法·排序算法
愚润求学9 小时前
【动态规划】01背包问题
c++·算法·leetcode·动态规划
会唱歌的小黄李9 小时前
【算法】贪心算法入门
算法·贪心算法
轻语呢喃10 小时前
每日LeetCode : 两数相加--链表操作与进位的经典处理
javascript·算法
钢铁男儿10 小时前
C# 接口(接口可以继承接口)
java·算法·c#
zl_vslam11 小时前
SLAM中的非线性优化-2D图优化之激光SLAM cartographer前端匹配(十七)
前端·人工智能·算法