【算法详解】力扣69.x的平方根

一、题目描述

力扣链接:力扣69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

二、思路分析

可以使用二分查找法来逼近一个数的平方根

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        int left = 0, right = x, result = 0;

        while (left <= right) {
            int mid = (left + right) >> 1;

            if ((long long)mid * mid <= x) {
                result = mid;
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return result;
    }
};

牛顿迭代法是一种用于寻找方程根的数值方法,它可以用来求解平方根。对于求解方程 f(x) = 0,牛顿迭代法的迭代公式为:

x n + 1 = x n − f ( x n ) f ' ( x n ) x_{n+1}=x_{n}-\frac{f(x_n)}{f^`(x_n)} xn+1=xn−f'(xn)f(xn)

对于求解 x = 0 \sqrt{x}=0 x =0,则可以令 f ( x ) = x 2 − a f(x)=x^2-a f(x)=x2−a其中 a 是要求平方根的非负整数。

那么迭代公式就变为:

x n + 1 = 0.5 ∗ ( x n + f ( x n ) f ' ( x n ) ) x_{n+1}=0.5*(x_{n}+\frac{f(x_n)}{f^`(x_n)}) xn+1=0.5∗(xn+f'(xn)f(xn))

那么可以写出C++代码

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        if (x == 0 || x == 1) {
            return x;
        }

        double result = x;
        double epsilon = 1e-6;

        while (fabs(result * result - x) > epsilon) {
            result = 0.5 * (result + x / result);
        }
        return static_cast<int>(result);
    }
};
相关推荐
PAK向日葵5 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者8 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者8 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9369 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑10 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟11 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀11 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11211 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧12 小时前
线程相关编程、线程间通信、互斥锁
linux·算法