【算法详解】力扣69.x的平方根

一、题目描述

力扣链接:力扣69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

二、思路分析

可以使用二分查找法来逼近一个数的平方根

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        int left = 0, right = x, result = 0;

        while (left <= right) {
            int mid = (left + right) >> 1;

            if ((long long)mid * mid <= x) {
                result = mid;
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return result;
    }
};

牛顿迭代法是一种用于寻找方程根的数值方法,它可以用来求解平方根。对于求解方程 f(x) = 0,牛顿迭代法的迭代公式为:

x n + 1 = x n − f ( x n ) f ' ( x n ) x_{n+1}=x_{n}-\frac{f(x_n)}{f^`(x_n)} xn+1=xn−f'(xn)f(xn)

对于求解 x = 0 \sqrt{x}=0 x =0,则可以令 f ( x ) = x 2 − a f(x)=x^2-a f(x)=x2−a其中 a 是要求平方根的非负整数。

那么迭代公式就变为:

x n + 1 = 0.5 ∗ ( x n + f ( x n ) f ' ( x n ) ) x_{n+1}=0.5*(x_{n}+\frac{f(x_n)}{f^`(x_n)}) xn+1=0.5∗(xn+f'(xn)f(xn))

那么可以写出C++代码

cpp 复制代码
class Solution {
public:
    int mySqrt(int x) {
        if (x == 0 || x == 1) {
            return x;
        }

        double result = x;
        double epsilon = 1e-6;

        while (fabs(result * result - x) > epsilon) {
            result = 0.5 * (result + x / result);
        }
        return static_cast<int>(result);
    }
};
相关推荐
写代码的小球2 小时前
求模运算符c
算法
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
YuTaoShao7 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记7 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲8 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
刘海东刘海东8 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
pumpkin845149 小时前
Rust 调用 C 函数的 FFI
c语言·算法·rust
挺菜的9 小时前
【算法刷题记录(简单题)003】统计大写字母个数(java代码实现)
java·数据结构·算法
mit6.8249 小时前
7.6 优先队列| dijkstra | hash | rust
算法