基于变换域的模版匹配

模板匹配原理

图像的空间域与其他域之间的变换,如傅里叶变换,小波变换,轮廓波变换,剪切波变换等,实际上是图像在其他坐标领域中的表现。在空间域中,图像的信息是像素值和坐标位置;在其他域中,如傅里叶变换,图像的信息就是频率和幅度。简单的讲就是从不同的角度看图像而已。在其他域中对图像进行模板匹配处理,称为基于变换域的模板匹配。

基于傅里叶变换的图像匹配是典型的基于变换域的模板匹配方法,图像的旋转、平移、比例变换等均能在傅里叶变换的频域中反映出来。

基于快速傅里叶互变换的模板匹配

Matlab程序代码

Matlab 复制代码
%% 读取背景背景和模板图像,并将其转化为灰度图

template = rgb2gray(imread('baby_mask.jpg'));

background = rgb2gray(imread('baby.jpg')); 

%% 获取图像的尺寸

[by,bx] = size(background);

[ty,tx] = size(template); % used for bbox placement 

%% 进行傅里叶变换,计算频谱数据

Ga = fft2(background);

Gb = fft2(template, by, bx);

c = real(ifft2((Ga.*conj(Gb))./abs(Ga.*conj(Gb))));

%% 画出互相关矩阵图像

figure;

surf(c),

shading flat; % plot correlation 

%% 获取互相关函数的峰值位置
[max_c, imax]   = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));   
%% 计算背景图像中的匹配区域的位置
position = [xpeak(1), ypeak(1), tx, ty]; 
%% 画出方框图
hFig = figure;
hAx  = axes;
imshow(background, 'Parent', hAx);
rectangle('Position',position,'LineWidth',0.8,'EdgeColor','r');
  

结果图片

相关推荐
啊巴矲几秒前
小白从零开始勇闯人工智能:机器学习初级篇(线性回归与逻辑回归)
人工智能·机器学习·线性回归
cici158744 分钟前
MATLAB全景拼接完整实现方案
图像处理·计算机视觉·matlab
deardao11 分钟前
【时序异常检测综述】十年回顾:深入研究时间序列异常检测
人工智能·机器学习·时间序列·事件检测
Axis tech15 分钟前
SenseGlove R1外骨骼手套专为机器人遥操作设计
人工智能
沫儿笙15 分钟前
弧焊机器人节气设备
人工智能·机器人
百锦再22 分钟前
Python实现开源AI模型引入及测试全过程
人工智能·python·ai·开源·aigc·模型·自然语言
咋吃都不胖lyh28 分钟前
详解 UCB 算法的置信区间与核心逻辑(通俗 + 公式 + 实例)
人工智能·算法·机器学习
造火箭29 分钟前
普通手机使用Open-AutoGLM 感受豆包AI 手机的体验
人工智能·智能手机
Mr.Lee jack29 分钟前
【torch.compile】PyTorch Dynamo 和 Inductor 编译流程
人工智能·pytorch·深度学习
浮不上来31 分钟前
人工兔优化算法(ARO)详解:原理、实现与应用
大数据·人工智能·机器学习·优化算法