基于变换域的模版匹配

模板匹配原理

图像的空间域与其他域之间的变换,如傅里叶变换,小波变换,轮廓波变换,剪切波变换等,实际上是图像在其他坐标领域中的表现。在空间域中,图像的信息是像素值和坐标位置;在其他域中,如傅里叶变换,图像的信息就是频率和幅度。简单的讲就是从不同的角度看图像而已。在其他域中对图像进行模板匹配处理,称为基于变换域的模板匹配。

基于傅里叶变换的图像匹配是典型的基于变换域的模板匹配方法,图像的旋转、平移、比例变换等均能在傅里叶变换的频域中反映出来。

基于快速傅里叶互变换的模板匹配

Matlab程序代码

Matlab 复制代码
%% 读取背景背景和模板图像,并将其转化为灰度图

template = rgb2gray(imread('baby_mask.jpg'));

background = rgb2gray(imread('baby.jpg')); 

%% 获取图像的尺寸

[by,bx] = size(background);

[ty,tx] = size(template); % used for bbox placement 

%% 进行傅里叶变换,计算频谱数据

Ga = fft2(background);

Gb = fft2(template, by, bx);

c = real(ifft2((Ga.*conj(Gb))./abs(Ga.*conj(Gb))));

%% 画出互相关矩阵图像

figure;

surf(c),

shading flat; % plot correlation 

%% 获取互相关函数的峰值位置
[max_c, imax]   = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));   
%% 计算背景图像中的匹配区域的位置
position = [xpeak(1), ypeak(1), tx, ty]; 
%% 画出方框图
hFig = figure;
hAx  = axes;
imshow(background, 'Parent', hAx);
rectangle('Position',position,'LineWidth',0.8,'EdgeColor','r');
  

结果图片

相关推荐
aneasystone本尊1 分钟前
实战 LiteLLM 与外部日志系统的集成
人工智能
AhaPuPu4 分钟前
LLM Agent Attack- Indirect Prompt Injection
网络·人工智能·prompt
得贤招聘官7 分钟前
AI技术驱动下的招聘行业转型
人工智能
猫天意11 分钟前
【深度学习即插即用模块之注意力】EfficientChannelAttention,涨点必备彻底疯狂!
人工智能·笔记·深度学习·神经网络·yolo
ghie909012 分钟前
ART 和SART 医学CT重建迭代重建算法
人工智能·算法·计算机视觉
熊猫_豆豆14 分钟前
基于改进沙猫群优化算法的Otsu图像分割
人工智能·算法·计算机视觉
学习是生活的调味剂15 分钟前
LLaMA大模型家族发展介绍
人工智能·llama
_大峰_15 分钟前
【论文精读】Aligning Language Models to Explicitly Handle Ambiguity
人工智能·语言模型·自然语言处理
QBoson15 分钟前
EP-GAT革新股票预测:能量建模 + 并行注意力精准捕捉市场动态
人工智能·深度学习·机器学习
余蓝17 分钟前
部署语音模型CosyVoice,附多种玩法
人工智能·语言模型·transformer·语音识别·audiolm