基于变换域的模版匹配

模板匹配原理

图像的空间域与其他域之间的变换,如傅里叶变换,小波变换,轮廓波变换,剪切波变换等,实际上是图像在其他坐标领域中的表现。在空间域中,图像的信息是像素值和坐标位置;在其他域中,如傅里叶变换,图像的信息就是频率和幅度。简单的讲就是从不同的角度看图像而已。在其他域中对图像进行模板匹配处理,称为基于变换域的模板匹配。

基于傅里叶变换的图像匹配是典型的基于变换域的模板匹配方法,图像的旋转、平移、比例变换等均能在傅里叶变换的频域中反映出来。

基于快速傅里叶互变换的模板匹配

Matlab程序代码

Matlab 复制代码
%% 读取背景背景和模板图像,并将其转化为灰度图

template = rgb2gray(imread('baby_mask.jpg'));

background = rgb2gray(imread('baby.jpg')); 

%% 获取图像的尺寸

[by,bx] = size(background);

[ty,tx] = size(template); % used for bbox placement 

%% 进行傅里叶变换,计算频谱数据

Ga = fft2(background);

Gb = fft2(template, by, bx);

c = real(ifft2((Ga.*conj(Gb))./abs(Ga.*conj(Gb))));

%% 画出互相关矩阵图像

figure;

surf(c),

shading flat; % plot correlation 

%% 获取互相关函数的峰值位置
[max_c, imax]   = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));   
%% 计算背景图像中的匹配区域的位置
position = [xpeak(1), ypeak(1), tx, ty]; 
%% 画出方框图
hFig = figure;
hAx  = axes;
imshow(background, 'Parent', hAx);
rectangle('Position',position,'LineWidth',0.8,'EdgeColor','r');
  

结果图片

相关推荐
Code_流苏13 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W15 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang16 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习
洁洁!19 分钟前
数据采集助力AI大模型训练
前端·人工智能·easyui
平平无奇科研小天才26 分钟前
scGPT环境安装
人工智能
xcLeigh32 分钟前
计算机视觉入门:从像素到理解的旅程
人工智能·python·opencv·计算机视觉
喾颛顼1 小时前
Mac下小智AI本地环境部署
人工智能·经验分享·macos
艾鹤1 小时前
ollama安装与使用
人工智能·llama
最新快讯1 小时前
科技快讯 | 中国首款全自研高性能RISC-V服务器芯片发布;亚马逊推出Nova Act跻身AI智能体赛道
人工智能·科技
Peter11467178501 小时前
服务器入门操作1(深度学习)
服务器·人工智能·笔记·深度学习·学习