基于变换域的模版匹配

模板匹配原理

图像的空间域与其他域之间的变换,如傅里叶变换,小波变换,轮廓波变换,剪切波变换等,实际上是图像在其他坐标领域中的表现。在空间域中,图像的信息是像素值和坐标位置;在其他域中,如傅里叶变换,图像的信息就是频率和幅度。简单的讲就是从不同的角度看图像而已。在其他域中对图像进行模板匹配处理,称为基于变换域的模板匹配。

基于傅里叶变换的图像匹配是典型的基于变换域的模板匹配方法,图像的旋转、平移、比例变换等均能在傅里叶变换的频域中反映出来。

基于快速傅里叶互变换的模板匹配

Matlab程序代码

Matlab 复制代码
%% 读取背景背景和模板图像,并将其转化为灰度图

template = rgb2gray(imread('baby_mask.jpg'));

background = rgb2gray(imread('baby.jpg')); 

%% 获取图像的尺寸

[by,bx] = size(background);

[ty,tx] = size(template); % used for bbox placement 

%% 进行傅里叶变换,计算频谱数据

Ga = fft2(background);

Gb = fft2(template, by, bx);

c = real(ifft2((Ga.*conj(Gb))./abs(Ga.*conj(Gb))));

%% 画出互相关矩阵图像

figure;

surf(c),

shading flat; % plot correlation 

%% 获取互相关函数的峰值位置
[max_c, imax]   = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));   
%% 计算背景图像中的匹配区域的位置
position = [xpeak(1), ypeak(1), tx, ty]; 
%% 画出方框图
hFig = figure;
hAx  = axes;
imshow(background, 'Parent', hAx);
rectangle('Position',position,'LineWidth',0.8,'EdgeColor','r');
  

结果图片

相关推荐
编码小哥2 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念2 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路3 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen3 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗3 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型4 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd4 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白5 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_805 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20205 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能