Tensorflow2.0笔记 - tensor的合并和分割

主要记录concat,stack,unstack和split相关操作的作用

import tensorflow as tf
import numpy as np

tf.__version__

#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)

#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)

#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat

#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)

#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)

#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat

#unstack和stack操作相反,会对指定维度进行拆分
tensor = tf.ones([3,4,35,8])

#拆分出3个[4,35,8]的tensor
splited = tf.unstack(tensor, axis=0)
print("==========>tf.unstack(tensor, axis=0).shape:", splited[0].shape, splited[1].shape, splited[2].shape)

#拆分出8个[3,4,35]的tensor
splited = tf.unstack(tensor, axis=3)
print("==========>tf.unstack(tensor, axis=3).shape:", 
      splited[0].shape, splited[1].shape, splited[2].shape,
      splited[3].shape, splited[4].shape, splited[5].shape,
      splited[5].shape, splited[6].shape, splited[7].shape)

#拆分出4个[3,35,8]的tensor
splited = tf.unstack(tensor, axis=1)
print("==========>tf.unstack(tensor, axis=1).shape:", splited[0].shape, splited[1].shape, splited[2].shape, splited[3].shape)

#unstack会固定打散指定维度为1
#split则可以指定这个维度划分的比例,通过num_or_size_splits指定
#看个例子就明白了
tensor = tf.ones([2,4,35,8])
#第3个维度划分为2个4维的两个tensor([2,4,35,4]) --- 8 / 2(num_of_size_splits) = 4
splited = tf.split(tensor, axis=3, num_or_size_splits=2)
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape)

#将第3个维度按照2,2,4的比例划分,得到3个tensor
splited = tf.split(tensor, axis=3, num_or_size_splits=[2,2,4])
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape, splited[2].shape)

运行结果:

相关推荐
charles_vaez15 分钟前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
Python大数据分析@32 分钟前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树33 分钟前
简单的签到程序 python笔记
笔记·python
北京搜维尔科技有限公司34 分钟前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域37 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr37 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆42 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
Shy9604181 小时前
Bert完形填空
python·深度学习·bert
云起无垠1 小时前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
上海_彭彭1 小时前
【提效工具开发】Python功能模块执行和 SQL 执行 需求整理
开发语言·python·sql·测试工具·element