【BI&AI】Lecture 8 - EEG data analysis hands on

Lecture 8 - EEG data analysis hands on

分析流程

Recap: 频域上的分析


Recap: ICA降噪

ICA: 用于从混合信号中分离出独立的成分或因素。它可以将观测到的多个信号分解为相互独立的成分,这些成分在原始信号中可能是混合在一起的。

假设采集EEG信号的帽子上有n个电极,则有n个观测信号,用 x 1 x_1 x1, x 2 x_2 x2... x n x_n xn表示。采集到的信号可能包含除了脑电信号之外的其他信号,假设共有m个独立成分的混合,用 s 1 s_1 s1, s 2 s_2 s2... s m s_m sm表示。

x和s之间满足一个关系式: x = A s x = As x=As

举例,比如有20个观测信号,从中分离出来了20个独立成分,如何从20个成分选择我们需要的信号,可以根据经验判断都是什么信号,比如下图第一个信号是眼动信号,我们可以将s中第一行设置为0,逆变换回去就求得原始数据降噪后的x。

也可以根据脑地形图判断是否为噪声,对于脑电信号而言,感兴趣的成分通常在地形图上呈现出具有空间拓扑结构的分布。

间隔相同的时间,多次给予相同的刺激,并采集参与者的脑电EEG信号,将多次采集的信号划分为不同epoch求平均得到ERP。

MNE

MNE(Magnetoencephalography and Electroencephalography)工具包是一个用于脑电图(EEG)和脑磁图(MEG)数据分析的Python开源软件包。它提供了一系列功能和工具,用于处理、分析和可视化脑电图和脑磁图数据。

代码部分大家可以自己看视频讲解,在GitHub上也上传了代码,这里不再展示。

相关推荐
Light6017 小时前
智链全球,韧性履约:AI赋能新一代海外EPC/EPCM项目管理解决方案
人工智能·数字孪生·风险管理·ai赋能·海外epc/epcm·智慧项目管理·协同增效
棒棒的皮皮19 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
2501_9418043219 小时前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch19 小时前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
档案宝档案管理19 小时前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
哥布林学者20 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (二)循环神经网络
深度学习·ai
wenzhangli720 小时前
Ooder A2UI 框架中的矢量图形全面指南
人工智能
躺柒20 小时前
读共生:4.0时代的人机关系07工作者
人工智能·ai·自动化·人机交互·人机对话·人机关系
码丽莲梦露20 小时前
ICLR2025年与运筹优化相关文章
人工智能·运筹优化
ai_top_trends20 小时前
2026 年度工作计划 PPT 模板与 AI 生成方法详解
人工智能·python·powerpoint