【BI&AI】Lecture 8 - EEG data analysis hands on

Lecture 8 - EEG data analysis hands on

分析流程

Recap: 频域上的分析


Recap: ICA降噪

ICA: 用于从混合信号中分离出独立的成分或因素。它可以将观测到的多个信号分解为相互独立的成分,这些成分在原始信号中可能是混合在一起的。

假设采集EEG信号的帽子上有n个电极,则有n个观测信号,用 x 1 x_1 x1, x 2 x_2 x2... x n x_n xn表示。采集到的信号可能包含除了脑电信号之外的其他信号,假设共有m个独立成分的混合,用 s 1 s_1 s1, s 2 s_2 s2... s m s_m sm表示。

x和s之间满足一个关系式: x = A s x = As x=As

举例,比如有20个观测信号,从中分离出来了20个独立成分,如何从20个成分选择我们需要的信号,可以根据经验判断都是什么信号,比如下图第一个信号是眼动信号,我们可以将s中第一行设置为0,逆变换回去就求得原始数据降噪后的x。

也可以根据脑地形图判断是否为噪声,对于脑电信号而言,感兴趣的成分通常在地形图上呈现出具有空间拓扑结构的分布。

间隔相同的时间,多次给予相同的刺激,并采集参与者的脑电EEG信号,将多次采集的信号划分为不同epoch求平均得到ERP。

MNE

MNE(Magnetoencephalography and Electroencephalography)工具包是一个用于脑电图(EEG)和脑磁图(MEG)数据分析的Python开源软件包。它提供了一系列功能和工具,用于处理、分析和可视化脑电图和脑磁图数据。

代码部分大家可以自己看视频讲解,在GitHub上也上传了代码,这里不再展示。

相关推荐
永霖光电_UVLED5 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20125 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI6 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名6 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子6 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail6 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI6 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex6 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害7 小时前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆7 小时前
智能体 - AI 幻觉
人工智能