【BI&AI】Lecture 8 - EEG data analysis hands on

Lecture 8 - EEG data analysis hands on

分析流程

Recap: 频域上的分析


Recap: ICA降噪

ICA: 用于从混合信号中分离出独立的成分或因素。它可以将观测到的多个信号分解为相互独立的成分,这些成分在原始信号中可能是混合在一起的。

假设采集EEG信号的帽子上有n个电极,则有n个观测信号,用 x 1 x_1 x1, x 2 x_2 x2... x n x_n xn表示。采集到的信号可能包含除了脑电信号之外的其他信号,假设共有m个独立成分的混合,用 s 1 s_1 s1, s 2 s_2 s2... s m s_m sm表示。

x和s之间满足一个关系式: x = A s x = As x=As

举例,比如有20个观测信号,从中分离出来了20个独立成分,如何从20个成分选择我们需要的信号,可以根据经验判断都是什么信号,比如下图第一个信号是眼动信号,我们可以将s中第一行设置为0,逆变换回去就求得原始数据降噪后的x。

也可以根据脑地形图判断是否为噪声,对于脑电信号而言,感兴趣的成分通常在地形图上呈现出具有空间拓扑结构的分布。

间隔相同的时间,多次给予相同的刺激,并采集参与者的脑电EEG信号,将多次采集的信号划分为不同epoch求平均得到ERP。

MNE

MNE(Magnetoencephalography and Electroencephalography)工具包是一个用于脑电图(EEG)和脑磁图(MEG)数据分析的Python开源软件包。它提供了一系列功能和工具,用于处理、分析和可视化脑电图和脑磁图数据。

代码部分大家可以自己看视频讲解,在GitHub上也上传了代码,这里不再展示。

相关推荐
2501_9071368214 分钟前
AI 小说生成器-基于 Tauri 2.0 + Vue 3 + TypeScript 的智能小说创作工具
人工智能·软件需求
love530love20 分钟前
ComfyUI 升级 v0.4.0 踩坑记录:解决 TypeError: QM_Queue.task_done() 报错
人工智能·windows·python·comfyui
金士镧(厦门)新材料有限公司23 分钟前
稀土化合物:推动科技发展的“隐形力量”
人工智能·科技·安全·全文检索·生活·能源
牛客企业服务26 分钟前
AI简历筛选:破解海量简历处理难题
人工智能
粟悟饭&龟波功32 分钟前
【GitHub热门项目精选】(2025-12-19)
前端·人工智能·后端·github
诸葛务农33 分钟前
类脑智能技术前沿进展及中美类脑智能技术比对
人工智能
LiYingL35 分钟前
ChartCap:利用大型数据集和新的评估指标抑制图表标题幻觉
人工智能
有来有去952738 分钟前
vllm推理服务指标监控看板搭建手册
人工智能·vllm
流浪法师1244 分钟前
MyPhishing-Web:AI 驱动的钓鱼邮件检测可视化平台
前端·人工智能
LinkTime_Cloud1 小时前
谷歌深夜突袭:免费Flash模型发令,部分测试优于 GPT-5.2
人工智能·gpt·深度学习