【BI&AI】Lecture 8 - EEG data analysis hands on

Lecture 8 - EEG data analysis hands on

分析流程

Recap: 频域上的分析


Recap: ICA降噪

ICA: 用于从混合信号中分离出独立的成分或因素。它可以将观测到的多个信号分解为相互独立的成分,这些成分在原始信号中可能是混合在一起的。

假设采集EEG信号的帽子上有n个电极,则有n个观测信号,用 x 1 x_1 x1, x 2 x_2 x2... x n x_n xn表示。采集到的信号可能包含除了脑电信号之外的其他信号,假设共有m个独立成分的混合,用 s 1 s_1 s1, s 2 s_2 s2... s m s_m sm表示。

x和s之间满足一个关系式: x = A s x = As x=As

举例,比如有20个观测信号,从中分离出来了20个独立成分,如何从20个成分选择我们需要的信号,可以根据经验判断都是什么信号,比如下图第一个信号是眼动信号,我们可以将s中第一行设置为0,逆变换回去就求得原始数据降噪后的x。

也可以根据脑地形图判断是否为噪声,对于脑电信号而言,感兴趣的成分通常在地形图上呈现出具有空间拓扑结构的分布。

间隔相同的时间,多次给予相同的刺激,并采集参与者的脑电EEG信号,将多次采集的信号划分为不同epoch求平均得到ERP。

MNE

MNE(Magnetoencephalography and Electroencephalography)工具包是一个用于脑电图(EEG)和脑磁图(MEG)数据分析的Python开源软件包。它提供了一系列功能和工具,用于处理、分析和可视化脑电图和脑磁图数据。

代码部分大家可以自己看视频讲解,在GitHub上也上传了代码,这里不再展示。

相关推荐
lixin5565568 小时前
基于深度生成对抗网络的高质量图像生成模型研究与实现
java·人工智能·pytorch·python·深度学习·语言模型
泰迪智能科技018 小时前
泰迪智能科技人工智能综合实验箱功能简介及实训支持内容介绍
人工智能·科技
DS随心转小程序8 小时前
DeepSeek井号解决方法
人工智能·aigc·deepseek·ds随心转
安全二次方security²8 小时前
CUDA C++编程指南(7.15&16)——C++语言扩展之内存空间谓词和转化函数
c++·人工智能·nvidia·cuda·内存空间谓词函数·内存空间转化函数·address space
laplace01239 小时前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
Pythonliu79 小时前
AI4Science 模型 平台 开源 智能 未来
人工智能·蛋白
aiguangyuan9 小时前
从零实现循环神经网络:中文情感分析的完整实践指南
人工智能·python·nlp
Master_oid9 小时前
机器学习30:神经网络压缩(Network Compression)①
人工智能·神经网络·机器学习
xinyuan_1234569 小时前
不止于提速:德州数智招标采购交易平台,重塑采购生态新效率
大数据·人工智能
沃达德软件9 小时前
智能车辆检索系统解析
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·目标跟踪