【BI&AI】Lecture 8 - EEG data analysis hands on

Lecture 8 - EEG data analysis hands on

分析流程

Recap: 频域上的分析


Recap: ICA降噪

ICA: 用于从混合信号中分离出独立的成分或因素。它可以将观测到的多个信号分解为相互独立的成分,这些成分在原始信号中可能是混合在一起的。

假设采集EEG信号的帽子上有n个电极,则有n个观测信号,用 x 1 x_1 x1, x 2 x_2 x2... x n x_n xn表示。采集到的信号可能包含除了脑电信号之外的其他信号,假设共有m个独立成分的混合,用 s 1 s_1 s1, s 2 s_2 s2... s m s_m sm表示。

x和s之间满足一个关系式: x = A s x = As x=As

举例,比如有20个观测信号,从中分离出来了20个独立成分,如何从20个成分选择我们需要的信号,可以根据经验判断都是什么信号,比如下图第一个信号是眼动信号,我们可以将s中第一行设置为0,逆变换回去就求得原始数据降噪后的x。

也可以根据脑地形图判断是否为噪声,对于脑电信号而言,感兴趣的成分通常在地形图上呈现出具有空间拓扑结构的分布。

间隔相同的时间,多次给予相同的刺激,并采集参与者的脑电EEG信号,将多次采集的信号划分为不同epoch求平均得到ERP。

MNE

MNE(Magnetoencephalography and Electroencephalography)工具包是一个用于脑电图(EEG)和脑磁图(MEG)数据分析的Python开源软件包。它提供了一系列功能和工具,用于处理、分析和可视化脑电图和脑磁图数据。

代码部分大家可以自己看视频讲解,在GitHub上也上传了代码,这里不再展示。

相关推荐
谷粒.2 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR6 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信8 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20098 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟8 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播8 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训8 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹9 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55189 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora9 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习