Transformer and Pretrain Language Models3-2

transformer structure注意力机制的各种变体

第二种变体:

如果两个向量的维度不一样,我们就需要在中间加上一个权重矩阵,来实现他们之间的相乘,然后最后得到一个标量

第三种变体:

additive attention

它和前面的有一个比较大的不同,它使用了一层的前馈神经网络,来将两个向量变成一个标量,来得到注意力分数

在这个变体中,w1、w2和v,分别是两个权重矩阵和一个权重向量;tanh是一个激活函数。这样的话最后也可以得到一个标量,作为前面的注意力分数

此外还有许多其他的变体,可执行查找了解。

相关推荐
喜欢吃豆11 分钟前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
七元权14 分钟前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
智驱力人工智能17 分钟前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
艾醒(AiXing-w)27 分钟前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
姚瑞南37 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣1 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
一车小面包1 小时前
对注意力机制的直观理解
人工智能·深度学习·机器学习
XZSSWJS1 小时前
深度学习基础-Chapter 02-Softmax与交叉熵
人工智能·深度学习
ringking1232 小时前
BEVFUSION解读(五)
深度学习
机器学习之心2 小时前
一个基于自适应图卷积神经微分方程(AGCNDE)的时空序列预测Matlab实现。这个模型结合了图卷积网络和神经微分方程,能够有效捕捉时空数据的动态演化规律
人工智能·深度学习·matlab·时空序列预测