Transformer and Pretrain Language Models3-2

transformer structure注意力机制的各种变体

第二种变体:

如果两个向量的维度不一样,我们就需要在中间加上一个权重矩阵,来实现他们之间的相乘,然后最后得到一个标量

第三种变体:

additive attention

它和前面的有一个比较大的不同,它使用了一层的前馈神经网络,来将两个向量变成一个标量,来得到注意力分数

在这个变体中,w1、w2和v,分别是两个权重矩阵和一个权重向量;tanh是一个激活函数。这样的话最后也可以得到一个标量,作为前面的注意力分数

此外还有许多其他的变体,可执行查找了解。

相关推荐
Python图像识别2 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster2 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
深蓝电商API2 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
tt5555555555553 小时前
Transformer原理与过程详解
网络·深度学习·transformer
qzhqbb3 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
Victory_orsh3 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
java1234_小锋3 小时前
PyTorch2 Python深度学习 - 模型保存与加载
开发语言·python·深度学习·pytorch2
Python图像识别3 小时前
74_基于深度学习的垃圾桶垃圾溢出检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
CoovallyAIHub3 小时前
突破360°跟踪极限!OmniTrack++:全景MOT新范式,HOTA指标狂飙43%
深度学习·算法·计算机视觉
lybugproducer4 小时前
深度学习专题:模型训练的数据并行(二)
人工智能·深度学习·神经网络