在WIN从零开始在QMUE上添加一块自己的开发板(一)

文章目录

一、前言

笔者这篇博客作为平时学习时的笔记记录,如有不对还望指正,本博客大量借鉴资料,笔者只是拾人牙慧的小屁孩。

QEMU是一种通用的开源计算机仿真器和虚拟器。而QUME内置支持了一些开发板,我们可以基于这些内置的板子来做操作系统等软件的配置,但是实际市面上很多板子QUME中是没有提供支持的,这需要我们根据QUME的源码自定义一些开发板,然后再重新编译。

二、源码编译

笔者是在Win系统上利用Msys2进行的QUME源码编译。

(一)安装Msys2

打开 https://www.msys2.org/ ,下载最新Msys2的安装包并安装。

完成安装后,我们先进行更新源。

(笔者的安装路径为:C:\msys64

进入目录C:\msys64\etc\pacman.d

  • 在文件mirrorlist.msys的前面插入
    Server = http://mirrors.ustc.edu.cn/msys2/msys/$arch

  • 在文件mirrorlist.mingw32的前面插入
    Server = http://mirrors.ustc.edu.cn/msys2/mingw/i686

  • 在文件mirrorlist.mingw64的前面插入
    Server = http://mirrors.ustc.edu.cn/msys2/mingw/x86_64

然后我们启动 MSYS2 终端(MSYS2 MINGW64),进行更新:

bash 复制代码
pacman -Syu
pacman -Su

(二)配置GCC工具链

bash 复制代码
pacman -Sy mingw-w64-x86_64-toolchain

(三)安装QEMU构建依赖

bash 复制代码
pacman -Sy mingw-w64-x86_64-meson mingw-w64-x86_64-ninja \
           mingw-w64-x86_64-python \
           mingw-w64-x86_64-python-sphinx \
           mingw-w64-x86_64-python-sphinx_rtd_theme \
           mingw-w64-x86_64-autotools \
           mingw-w64-x86_64-tools-git \
           mingw-w64-x86_64-cc \
           mingw-w64-x86_64-angleproject \
           mingw-w64-x86_64-capstone \
           mingw-w64-x86_64-curl \
           mingw-w64-x86_64-cyrus-sasl \
           mingw-w64-x86_64-expat \
           mingw-w64-x86_64-fontconfig \
           mingw-w64-x86_64-freetype \
           mingw-w64-x86_64-fribidi \
           mingw-w64-x86_64-gcc-libs \
           mingw-w64-x86_64-gdk-pixbuf2 \
           mingw-w64-x86_64-gettext \
           mingw-w64-x86_64-glib2 \
           mingw-w64-x86_64-gmp \
           mingw-w64-x86_64-gnutls \
           mingw-w64-x86_64-graphite2 \
           mingw-w64-x86_64-gst-plugins-base \
           mingw-w64-x86_64-gstreamer \
           mingw-w64-x86_64-gtk3 \
           mingw-w64-x86_64-harfbuzz \
           mingw-w64-x86_64-jbigkit \
           mingw-w64-x86_64-lerc \
           mingw-w64-x86_64-libc++ \
           mingw-w64-x86_64-libdatrie \
           mingw-w64-x86_64-libdeflate \
           mingw-w64-x86_64-libepoxy \
           mingw-w64-x86_64-libffi \
           mingw-w64-x86_64-libiconv \
           mingw-w64-x86_64-libidn2 \
           mingw-w64-x86_64-libjpeg-turbo \
           mingw-w64-x86_64-libnfs \
           mingw-w64-x86_64-libpng \
           mingw-w64-x86_64-libpsl \
           mingw-w64-x86_64-libslirp \
           mingw-w64-x86_64-libssh \
           mingw-w64-x86_64-libssh2 \
           mingw-w64-x86_64-libtasn1 \
           mingw-w64-x86_64-libthai \
           mingw-w64-x86_64-libtiff \
           mingw-w64-x86_64-libunistring \
           mingw-w64-x86_64-libunwind \
           mingw-w64-x86_64-libusb \
           mingw-w64-x86_64-libwebp \
           mingw-w64-x86_64-libwinpthread-git \
           mingw-w64-x86_64-lz4 \
           mingw-w64-x86_64-lzo2 \
           mingw-w64-x86_64-nettle \
           mingw-w64-x86_64-openssl \
           mingw-w64-x86_64-opus \
           mingw-w64-x86_64-orc \
           mingw-w64-x86_64-p11-kit \
           mingw-w64-x86_64-pango \
           mingw-w64-x86_64-pixman \
           mingw-w64-x86_64-SDL2 \
           mingw-w64-x86_64-SDL2_image \
           mingw-w64-x86_64-snappy \
           mingw-w64-x86_64-spice \
           mingw-w64-x86_64-usbredir \
           mingw-w64-x86_64-xz \
           mingw-w64-x86_64-zlib \
           mingw-w64-x86_64-zstd

(四)下载编译QEMU源码

bash 复制代码
mkdir qemu
cd qemu/

下载QUME的版本为8.2.0

源码下载与编译:

(这里需要管理员权限打开Msys2)

bash 复制代码
wget https://download.qemu.org/qemu-8.2.0.tar.xz
tar xvJf qemu-8.2.0.tar.xz
cd qemu-8.2.0/
./configure
make -j8

编译完成后会生成一个./build目录

bash 复制代码
 cd build/
 make install

之后我们测试一下------查看QEMU的版本号:

bash 复制代码
Whisky@LAPTOP-ILRB6MKK MINGW64 ~/qemu/qemu-8.2.0/build
$ ./qemu-img -V
qemu-img version 8.2.0
Copyright (c) 2003-2023 Fabrice Bellard and the QEMU Project developers

启动QEMU:

这里以riscv32为例

至此我们已经编译完了QUME的源码了。

二、QUME编程基础

QEMU是一款开源的模拟器及虚拟机监管器(Virtual Machine Monitor, VMM),通过动态二进

制翻译来模拟CPU,并提供一系列的硬件模型,使guest os认为自己和硬件直接打交道,其实

是同QEMU模拟出来的硬件打交道,QEMU再将这些指令翻译给真正硬件进行操作。

(一)QOM机制

QOM ------The QEMU Object Model

QEMU提供了一套面向对象编程的模型------QOM,即QEMU Object Module,几乎所有的设备如CPU、内存、总线等都是利用这一面向对象的模型来实现的。

QEMU对象模型提供了一个注册用户可创建类型 并从这些类型实例化对象 的框架。

其实也就是一种OOP IN C (C上实现面对对象)。

一段面对对象的程序代码(C++语言)

cpp 复制代码
class MyClass {
public:
	int a;
	void set_A(int a);
}

切换为C语言也就是:

c 复制代码
struct MyClass {
	int a;
	void (*set_A)(MyClass *this, int a);
}

当然,这只是一个例子。

在QUME中,我们通常一个对象的初始化分为四步:

  1. TypeInfo 注册 TypeImpl
  2. 实例化 ObjectClass
  3. 实例化 Object
  4. 添加 Property

QOM模型的实现代码位于qom/文件夹下的文件中,这涉及了几个结构TypeImpl, ObjectClass, ObjectTypeInfo。看了下它们的定义都在/include/qom/object.h可以找到,只有TypeImpl的具体结构是在/qom/object.c中。

ObjectClass: 是所有类对象的基类,第一个成员变量为类型typedef struct TypeImpl *type
Object: 是所有对象的 基类Base Object , 第一个成员变量为指向 ObjectClass类型的指针。
TypeInfo:是用户用来定义一个 Type 的工具型的数据结构。
TypeImpl:对数据类型的抽象数据结构,TypeInfo的属性与TypeImpl的属性对应。

(二)将 TypeInfo 注册 TypeImpl

cpp 复制代码
struct TypeInfo
{
    const char *name;
    const char *parent;

    size_t instance_size;
    void (*instance_init)(Object *obj);
    void (*instance_post_init)(Object *obj);
    void (*instance_finalize)(Object *obj);

    bool abstract;
    size_t class_size;

    void (*class_init)(ObjectClass *klass, void *data);
    void (*class_base_init)(ObjectClass *klass, void *data);
    void *class_data;

    InterfaceInfo *interfaces;
};

其中的重点有:

  1. Name :包含了自己的名字name和parent的名字的parent
  2. Class(针对ObjectClass) : ObjectClass的信息包括,class_sizeclass_data,class相关函数:class_base_initclass_initclass_finalize等。
    这些函数都是为了初始化,释放结构体ObjectClass。
  3. Instance(针对的是Object): 对象Object信息包括:instance_size,instance相关函数:instance_post_initinstance_initinstance_finalize
    这些函数都是为了初始化,释放结构体Object。
  4. 其他信息:abstract是否为抽象。interface数组。

一般是定义一个TypeInfo,然后调用 type_register(TypeInfo) 或者 type_register_static(TypeInfo) 函数(使用type_register_static比较多),就会生成相应的TypeImpl实例,将这个TypeInfo注册到全局的TypeImpl的hash表中。

我们来看一个例程:

cpp 复制代码
#define TYPE_MY_DEVICE "my-device"

static void my_device_class_init(ObjectClass *oc, void *data)
{
}
static void my_device_init(Object *obj)
{
}

typedef struct MyDeviceClass
{
	DeviceClass parent;
	void (*init) (MyDevice *obj);
} MyDeviceClass;

typedef struct MyDevice
{
	DeviceState parent;
	int reg0, reg1, reg2;
}MyDevice;

static const TypeInfo my_device_info = {
	.name = TYPE_MY_DEVICE,
	.parent = TYPE_DEVICE,
	.instance_size = sizeof(MyDevice),
	.instance_init = my_device_init,
	.class_size = sizeof(MyDeviceClass),
	.class_init = my_device_class_init,
};


static void my_device_register_types(void)
{
	type_register_static(&my_device_info);
}
type_init(my_device_register_types)

当然,其中的代码

cpp 复制代码
static void my_device_register_types(void)
{
	type_register_static(&my_device_info);
}
type_init(my_device_register_types)

也可以简化为

cpp 复制代码
DEFINE_TYPES(my_device_infos)

举个实际的例子

  1. 定义设备
cpp 复制代码
/* SOC state定义 */
#define TYPE_NUCLEI_HBIRD_SOC "riscv.nuclei.hbird.soc"
#define RISCV_NUCLEI_HBIRD_SOC(obj) \
OBJECT_CHECK(NucleiHBSoCState, (obj), TYPE_NUCLEI_HBIRD_SO
C)
typedef struct NucleiHBSoCState
{
	/*< private >*/
	SysBusDevice parent_obj;
	/*< public >*/
} NucleiHBSoCState;

/* Machine state定义 */
#define TYPE_HBIRD_FPGA_MACHINE MACHINE_TYPE_NAME("hbird_fpga")
#define HBIRD_FPGA_MACHINE(obj) \
OBJECT_CHECK(NucleiHBState, (obj), TYPE_HBIRD_FPGA_MACHINE)
typedef struct
{
	/*< private >*/
	SysBusDevice parent_obj;
	/*< public >*/
	NucleiHBSoCState soc;
} NucleiHBState;
  1. SOC设备注册
cpp 复制代码
static void nuclei_soc_init(Object *obj)
{
	qemu_log(">>nuclei_soc_init \n");
}
static void nuclei_soc_realize(DeviceState *dev, Error **errp)
{
	qemu_log(">>nuclei_soc_realize \n");
}
static void nuclei_soc_class_init(ObjectClass *oc, void *data)
{
	qemu_log(">>nuclei_soc_class_init \n");
	DeviceClass *dc = DEVICE_CLASS(oc);
	dc->realize = nuclei_soc_realize;
	dc->user_creatable = false;
}

static const TypeInfo nuclei_soc_type_info = {
	.name = TYPE_NUCLEI_HBIRD_SOC,
	.parent = TYPE_DEVICE,
	.instance_size = sizeof(NucleiHBSoCState),
	.instance_init = nuclei_soc_init,
	.class_init = nuclei_soc_class_init,
};
static void nuclei_soc_register_types(void)
{
type_register_static(&nuclei_soc_type_info);
}
type_init(nuclei_soc_register_types)

可以看见我们是在nuclei_soc_class_init设定了实例的成员函数实现nuclei_soc_realize

这里是需要理清的关系。

  1. Machine设备注册
cpp 复制代码
static void nuclei_board_init(MachineState *machine)
{
	NucleiHBState *s = HBIRD_FPGA_MACHINE(machine);
	qemu_log(">>nuclei_board_init \n");
	/* Initialize SOC */
	object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_NUCLEI_HBIRD_SOC);
	qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
}
static void nuclei_machine_instance_init(Object *obj)
{
	qemu_log(">>nuclei_machine_instance_init \n");
}
static void nuclei_machine_class_init(ObjectClass *oc, void *data)
{
	qemu_log(">>nuclei_machine_class_init \n");
	MachineClass *mc = MACHINE_CLASS(oc);
	mc->desc = "Nuclei HummingBird Evaluation Kit";
	mc->init = nuclei_board_init;
}

static const TypeInfo nuclei_machine_typeinfo = {
	.name = MACHINE_TYPE_NAME("hbird_fpga"),
	.parent = TYPE_MACHINE,
	.class_init = nuclei_machine_class_init,
	.instance_init = nuclei_machine_instance_init,
	.instance_size = sizeof(NucleiHBState),
};
static void nuclei_machine_init_register_types(void)
{
	type_register_static(&nuclei_machine_typeinfo);
}
type_init(nuclei_machine_init_register_types)
  1. 修改编译文件

hw/riscv/Kconfig:

cpp 复制代码
config NUCLEI_N
bool
select MSI_NONBROKEN
select UNIMP

hw/riscv/meson.build:

cpp 复制代码
riscv_ss = ss.source_set()
riscv_ss.add(files('boot.c'), fdt)
riscv_ss.add(files('numa.c'))
riscv_ss.add(files('riscv_hart.c'))
...
riscv_ss.add(when: 'CONFIG_NUCLEI_N', if_true: files('nuclei_n.c'))

hw_arch += {'riscv': riscv_ss}

configs\devices\riscv32-softmmu\default.mak:

cpp 复制代码
...
CONFIG_NUCLEI_N=y

编译参数:

cpp 复制代码
./configure --target-list=riscv32-softmmu
make -j16

(三)测试

编译完成后,我们进行安装(Msys2在管理员权限下运行)

cpp 复制代码
make install

当然,为了方便我们测试,也可以编写脚本,然后不混用build文件夹,保证我们自己平时也能使用qume纯净版:

build.sh:

bash 复制代码
# 获取当前脚本文件所在的目录
SHELL_FOLDER=$(cd "$(dirname "$0")";pwd)

if [ ! -d "$SHELL_FOLDER/output/qemu" ]; then  
./configure --prefix=$SHELL_FOLDER/output/qemu  --target-list=riscv32-softmmu
fi  
make -j8
make install
cd ..

run.sh:

bash 复制代码
SHELL_FOLDER=$(cd "$(dirname "$0")";pwd)
$SHELL_FOLDER/output/qemu/qemu-system-riscv32.exe \
-M hbird_fpga 

安装完成后

我们开始测试。

先看看板子的列表:

bash 复制代码
./qemu-system-riscv32.exe -M ?

得到的板子列表中有我们刚刚编写的板子:

bash 复制代码
Supported machines are:
hbird_fpga           Nuclei HummingBird Evaluation Kit
none                 empty machine
opentitan            RISC-V Board compatible with OpenTitan
sifive_e             RISC-V Board compatible with SiFive E SDK
sifive_u             RISC-V Board compatible with SiFive U SDK
spike                RISC-V Spike board (default)
virt                 RISC-V VirtIO board

我们直接运行这块板子:

bash 复制代码
./qemu-system-riscv32.exe -M hbird_fpga
bash 复制代码
>>nuclei_soc_class_init
>>nuclei_machine_class_init
>>nuclei_machine_instance_init
>>nuclei_board_init
>>nuclei_soc_init
>>nuclei_soc_realize

(四)从结果中的反思

ObjectClass的初始化

在测试结果中,我们还可以回味整个QUME的运行流程。

首先在我们注册TypeInfo时,其类的构造函数会在其创建其类的时候执行,也就是在TypeImpl的hash表已经有了之后,下一步要初始化每个type的时候。(这一步可以看成是class的初始化,可以理解成每一个type对应了一个class,接下来会初始化class)
main函数中的module_call_init(MODULE_INIT_QOM);调用了MODULE_INIT_QOM类型的ModuleTypeList中的所有ModuleEntry中的init()函数,也就是第一步type_init的第一个参数XXX_register_types函数指针。(__attribute__((constructor))的修饰让type_initmain之前执行,type_init的参数是XXX_register_types函数指针,将函数指针传递到ModuleEntryinit函数指针,最后就是将这个ModuleEntry插入到ModuleTypeList)那接下来就是XXX_register_types函数的操作了,就是一个个创建完TypeImpl的哈希表。

如果这里有看不懂,可以深究QEMU 的一些基础知识及QOM(Qemu Object Model)的部分相关源码阅读

之后main函数会调用machine_class = select_machine();在里面的调用链中将会有ti->class_init初始化的实现。

所以,会首先看见

bash 复制代码
>>nuclei_soc_class_init
>>nuclei_machine_class_init

实例化 Instance(Object)

其次,我们发现main函数接下来调用了qemu_opts_foreach,循环查找参数(options):

cpp 复制代码
qemu_opts_foreach(qemu_find_opts("device"),
                      default_driver_check, NULL, NULL);
qemu_opts_foreach(qemu_find_opts("device"),
                          device_help_func, NULL, NULL)
...
qemu_opts_foreach(qemu_find_opts("device"),
                      device_init_func, NULL, &error_fatal);

前二者default_driver_checkdevice_help_func参数的qemu_opts_foreach输出driver的help信息,还有那些option什么的。

重点在device_init_func参数的qemu_opts_foreach,在其中调用了qdev_device_add。而在qdev_device_add里面,重要的一行是调用了dev = DEVICE(object_new(driver));,而且上一行有个注释------/* create device */
DEVICE是一个宏,实际是OBJECT_CHECK,主要是是看看obj是否是TYPE_DEVICE的一个实例:

cpp 复制代码
#define DEVICE(obj) OBJECT_CHECK(DeviceState, (obj), TYPE_DEVICE)
#define OBJECT_CHECK(type, obj, name) \
    ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
                                        __FILE__, __LINE__, __func__))

更重要的是object_new(driver),它利用object_new_with_type进行实例:

它调用type_initialize,在其中调用parentclass_base_init进行初始化,最后调用自己class_init进行初始化。

其次调用object_init_with_type函数首先判断ti是否有parent(即type->parent != NULL),有parent就会递归调用object_init_with_type,最终就是调用ti->instance_init函数。

所以,再接着是

bash 复制代码
>>nuclei_machine_instance_init

之后又因为我们在nuclei_machine_class_init中赋值mc->init = nuclei_board_init;,所以执行ti->instance_init

bash 复制代码
>>nuclei_board_init

当然我们知道,在nuclei_board_init里面,我们进行了SOC的实例化:

cpp 复制代码
	object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_NUCLEI_HBIRD_SOC);
	qdev_realize(DEVICE(&s->soc), NULL, &error_abort);

所以最后:

bash 复制代码
>>nuclei_soc_init
>>nuclei_soc_realize

参考资料

  1. 如何在 Windows 10/11 上构建 QEMU
  2. 在Windows上编译QEMU
  3. 从源码构建Qemu
  4. [完结]从零开始的RISC-V模拟器开发·第一季·2021春季
  5. QEMU 的一些基础知识及QOM(Qemu Object Model)的部分相关源码阅读
相关推荐
A charmer3 分钟前
【C++】list 类深度解析:探索双向链表的奇妙世界
开发语言·c++
凤枭香14 分钟前
数字图像处理(c++ opencv):彩色图像处理-彩色基础与彩色模型
开发语言·c++·图像处理·python·opencv
爬菜15 分钟前
编译原理(手绘)
c语言
是阿建吖!1 小时前
【优选算法】双指针
c语言·c++·算法
跃渊Yuey2 小时前
【C++笔记】vector使用详解及模拟实现
c++·笔记
想不到好名字了()2 小时前
个人C++复习知识点(1)
开发语言·c++
绵绵细雨中的乡音2 小时前
第21课-C++[set和map学习和使用]
c++·学习
原来是猿2 小时前
类和对象(上)
c语言·开发语言·数据结构·c++·算法
码界领航2 小时前
Dev C++ 无法使用to_string方法的解决
开发语言·c++
无限大.2 小时前
C++ STL -- 模版
开发语言·c++