1. Flink关键组件:
这里首先要说明一下"客户端"。其实客户端并不是处理系统的一部分,它只负责作业的提交。具体来说,就是调用程序的 main 方法,将代码转换成"数据流图"(Dataflow Graph),并最终生成作业图(JobGraph:chainable条件的算子进行了chain ),一并发送给 JobManager。提交之后,任务的执行其实就跟客户端没有关系了;我们可以在客户端选择断开与 JobManager 的连接, 也可以继续保持连接。之前我们在命令提交作业时,加上的-d 参数,就是表示分离模式(detached mode),也就是断开连接。
当然,客户端可以随时连接到 JobManager,获取当前作业的状态和执行结果,也可以发送请求取消作业。不论通过 Web UI 还是命令行执行"flink run"的相关操作,都是通过客户端实现的。
TaskManager 启动之后,JobManager 会与它建立连接,并将作业图(JobGraph)转换成可执行的"执行图"(ExecutionGraph)分发给可用的 TaskManager,然后就由 TaskManager 具体执行任务。接下来,我们就具体介绍一下 JobManger 和 TaskManager 在整个过程中扮演的角色。
1. 客户端(Client):
代码由客户端获取并做转换,之后提交给JobMlanger
2. 作业管理器(JobManager):
JobManager 是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的 JobManager 所控制执行。对作业进行中央调度管理理;而它获取到要执行的作业后,会进一步处理转换,然后分发任务给众多的TaskManager。JobManger 又包含 3 个不同的组件
2.1 JobMaster
JobMaster 是 JobManager 中最核心的组件,负责处理单独的作业(Job)。所以 JobMaster和具体的 Job 是一一对应的,多个 Job 可以同时运行在一个 Flink 集群中, 每个 Job 都有一个自己的 JobMaster。需要注意在早期版本的 Flink 中,没有 JobMaster 的概念;而 JobManager的概念范围较小,实际指的就是现在所说的 JobMaster。在作业提交时,JobMaster 会先接收到要执行的应用。这里所说"应用"一般是客户端提交来的,包括:Jar 包,数据流图(dataflow graph),和作业图(JobGraph:chainable条件的算子进行了chain)。JobMaster 会把 JobGraph 转换成一个物理层面的数据流图,这个图被叫作"执行图"(ExecutionGraph:chainable条件的算子进行了chain后同算子并行任务进行拆分),它包含了所有可以并发执行的任务。 JobMaster 会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的 TaskManager 上。而在运行过程中,JobMaster 会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
2.2资源管理器(ResourceManager)
ResourceManager 主要负责资源的分配和管理,在 Flink 集群中只有一个。所谓"资源",主要是指 TaskManager 的任务槽(task slots)。任务槽就是 Flink 集群中的资源调配单元,包含了机器用来执行计算的一组 CPU 和内存资源。每一个任务(Task)都需要分配到一个 slot 上执行。这里注意要把 Flink 内置的 ResourceManager 和其他资源管理平台(比如 YARN)的ResourceManager 区分开。Flink 的 ResourceManager,针对不同的环境和资源管理平台(比如 Standalone 部署,或者YARN),有不同的具体实现。在 Standalone 部署时,因为 TaskManager 是单独启动的(没有Per-Job 模式),所以 ResourceManager 只能分发可用 TaskManager 的任务槽,不能单独启动新TaskManager。而在有资源管理平台时,就不受此限制。当新的作业申请资源时,ResourceManager 会将有空闲槽位的 TaskManager 分配给 JobMaster。如果 ResourceManager 没有足够的任务槽,它还可以向资源提供平台发起会话,请求提供启动 TaskManager 进程的容器。另外,ResourceManager 还负责停掉空闲的 TaskManager,释放计算资源。
2.3 分发器(Dispatcher)
Dispatcher 主要负责提供一个 REST 接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的 JobMaster 组件。Dispatcher 也会启动一个 Web UI,用来方便地展示和监控作业执行的信息。Dispatcher 在架构中并不是必需的,在不同的部署模式下可能会被忽略掉。
3. 任务管理器(TaskManager)
TaskManager 是 Flink 中的工作进程,数据流的具体计算就是它来做的,所以也被称为"Worker"。Flink 集群中必须至少有一个TaskManager;当然由于分布式计算的考虑,通常会有多个 TaskManager 运行,每一个 TaskManager 都包含了一定数量的任务槽(task slots)。Slot是资源调度的最小单位,slot 的数量限制了 TaskManager 能够并行处理的任务数量。启动之后,TaskManager 会向资源管理器注册它的 slots;收到资源管理器的指令后,TaskManager 就会将一个或者多个槽位提供给 JobMaster 调用,JobMaster 就可以分配任务来执行了。在执行过程中,TaskManager 可以缓冲数据,还可以跟其他运行同一应用的 TaskManager交换数据。
4. 作业提交流程
(1) 一般情况下,由客户端(App)通过分发器提供的 REST 接口,将作业提交给JobManager。
(2)由分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 将 JobGraph 解析为可执行的 ExecutionGraph,得到所需的资源数量,然后向资源管理器请求资源(slots)。
(4)资源管理器判断当前是否由足够的可用资源;如果没有,启动新的 TaskManager。
(5)TaskManager 启动之后,向 ResourceManager 注册自己的可用任务槽(slots)。
(6)资源管理器通知 TaskManager 为新的作业提供 slots。
(7)TaskManager 连接到对应的 JobMaster,提供 slots。
(8)JobMaster 将需要执行的任务分发给 TaskManager。
(9)TaskManager 执行任务,互相之间可以交换数据。
2. 核心概念
1. 数据流图(Dataflow Graph)
Flink 是流式计算框架。它的程序结构,其实就是定义了一连串的处理操作,每一个数据输入之后都会依次调用每一步计算。在 Flink 代码中,我们定义的每一个处理转换操作都叫作"算子"(Operator),所以我们的程序可以看作是一串算子构成的管道,数据则像水流一样有序
地流过。比如在之前的 WordCount 代码中,基于执行环境调用的 socketTextStream()方法,就是一个读取文本流的算子;而后面的flatMap()方法,则是将字符串数据进行分词、转换成二元组的算子。
在运行时,Flink 程序会被映射成所有算子按照逻辑顺序连接在一起的一张图,这被称为"逻辑数据流"(logical dataflow),或者叫"数据流图"(dataflow graph)。我们提交作业之后,打开 Flink 自带的 Web UI,点击作业就能看到对应的 dataflow,如图 4-7 所示。在数据流图中,可以清楚地看到 Source、Transformation、Sink 三部分。
数据流图类似于任意的有向无环图(DAG),这一点与 Spark 等其他框架是一致的。图中的每一条数据流(dataflow)以一个或多个 source 算子开始,以一个或多个 sink 算子结束。
是不是说,我们代码中基于 DataStream API 的每一个方法调用,都是一个算子呢?
并非如此。除了 Source 读取数据和 Sink 输出数据,一个中间的转换算子(Transformation Operator)必须是一个转换处理的操作;而在代码中有一些方法调用,数据是没有完成转换的。可能只是对属性做了一个设置,也可能定义的是数据的传递方式而非转换,又或者是需要几个方法合在一起才能表达一个完整的转换操作。例如,在之前的代码中,我们用到了定义分组的方法 keyBy,它就只是一个数据分区操作,而并不是一个算子。事实上,代码中我们可以看到调用其他转换操作之后返回的数据类型是 SingleOutputStreamOperator,说明这是一个算子操作;而 keyBy 之后返回的数据类型是 KeyedStream。感兴趣的读者也可以自行提交任务在 Web UI 中查看。
2. 并行度(Parallelism)
- 什么是并行计算
要解答这个问题,我们需要先梳理一下其他框架分配任务、数据处理的过程。对于 Spark而言,是把根据程序生成的 DAG 划分阶段(stage)、进而分配任务的。而对于 Flink 这样的流式引擎,其实没有划分 stage 的必要。因为数据是连续不断到来的,我们完全可以按照数据流图建立一个"流水线",前一个操作处理完成,就发往处理下一步操作的节点。如果说 Spark基于 MapReduce 架构的思想是"数据不动代码动",那么 Flink 就类似"代码不动数据流动",原因就在于流式数据本身是连续到来的、我们不会同时传输所有数据,这其实是更符合数据流本身特点的处理方式。
在大数据场景下,我们都是依靠分布式架构做并行计算,从而提高数据吞吐量的。既然处理完一个操作就可以把数据发往别处,那我们就可以将不同的算子操作任务,分配到不同的节点上执行了。这样就对任务做了分摊,实现了并行处理。但是仔细分析会发现,这种"并行"其实并不彻底。因为算子之间是有执行顺序的,对一条数据来说必须依次执行;而一个算子在同一时刻只能处理一个数据。比如之前WordCount,一条数据到来之后,我们必须先用 source 算子读进来、再做 flatMap 转换;一条数据被 source读入的同时,之前的数据可能正在被 flatMap 处理,这样不同的算子任务是并行的。但如果多条数据同时到来,一个算子是没有办法同时处理的,我们还是需要等待一条数据处理完、再处理下一条数据------这并没有真正提高吞吐量。
所以相对于上述的"任务并行",我们真正关心的,是"数据并行"。也就是说,多条数据同时到来,我们应该可以同时读入,同时在不同节点执行 flatMap 操作。
-
并行子任务和并行度
怎样实现数据并行呢?其实也很简单,我们把一个算子操作,"复制"多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的"子任务"(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
在 Flink 执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。
一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度 。一个程序中,不同的算子可能具有不同的并行度.
如上图所示,当前数据流中有 source、map、window、sink 四个算子,除最后 sink,其他算子的并行度都为 2。整个程序包含了 7 个子任务,至少需要 2 个分区来并行执行。我们可以说,这段流处理程序的并行度就是 2。
-
并行度的设置
//(1)代码中设置我们在代码中,可以很简单地在算子后跟着调用 setParallelism()方法,来设置当前算子的并行度:
stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);//(2)调用执行环境的 setParallelism()方法,全局设定并行度:
env.setParallelism(2);//(3)在使用 flink run 命令提交应用时,可以增加-p 参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:
bin/flink run --p 2 --c com.atguigu.wc.StreamWordCount ./FlinkTutorial-1.0-SNAPSHOT.jar//(4) 配置文件中设置在集群的配置文件 flink-conf.yaml 中直接更改默认并行度:
parallelism.default: 2
它们的优先级如下:
(1)对于一个算子,首先看在代码中是否单独指定了它的并行度,这个特定的设置优先级最高,会覆盖后面所有的设置。
(2)如果没有单独设置,那么采用当前代码中执行环境全局设置的并行度。
(3)如果代码中完全没有设置,那么采用提交时-p 参数指定的并行度。
(4)如果提交时也未指定-p 参数,那么采用集群配置文件中的默认并行度。
3.算子链(Operator Chain)
这里的一个节点,会把转换处理的很多个任务都连接在一起,合并成了一个"大任务"。这又是怎么回事呢?
- 数据流在算子之间传输数据的形式
一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
(1)一对一(One-to-one,forwarding)
这种模式下,数据流维护着分区以及元素的顺序。比如图中的 source 和 map 算子,source算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着 map 算子的子任务,看到的元素个数和顺序跟 source 算子的子任务产生的完全一样,保证着"一对一"的关系。map、filter、flatMap 等算子都是这种 one-to-one的对应关系。这种关系类似于 Spark 中的窄依赖。
(2)重分区(Redistributing)
在这种模式下,数据流的分区会发生改变。比图中的 map 和后面的 keyBy/window 算子之间(这里的 keyBy 是数据传输算子,后面的 window、apply 方法共同构成了 window 算子),以及 keyBy/window 算子和 Sink 算子之间,都是这样的关系。每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。例如,keyBy()是分组操作,本质上基于键(key)的哈希值(hashCode)进行了重分区;而当并行度改变时,比如从并行度为 2 的 window 算子,要传递到并行度为 1 的 Sink 算子,这时的数据传输方式是再平衡(rebalance),会把数据均匀地向下游子任务分发出去。这些传输方式都会引起重分区(redistribute)的过程,这一过程类似于 Spark 中的 shuffle。这种算子间的关系类似于 Spark 中的宽依赖。
- 合并算子链
在 Flink 中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个"大"的任务(task),这样原来的算子就成为了真正任务里的一部分每个 task会被一个线程执行。这样的技术被称为"算子链"(Operator Chain)。
比如在图中,Source 和 map 之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为 2,所以合并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有 5 个任务,由 5 个线程并行执行。
Flink 为什么要有算子链这样一个设计呢?
这是因为将算子链接成 task 是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。Flink 默认会按照算子链的原则进行链接合并,如果我们想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:
// 禁用算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();
// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()
4.作业图(JobGraph)与执行图(ExecutionGraph)
由 Flink 程序直接映射成的数据流图(dataflow graph),也被称为逻辑流图(logical StreamGraph),因为它们表示的是计算逻辑的高级视图。到具体执行环节时,我们还要考虑并行子任务的分配、数据在任务间的传输,以及合并算子链的优化。为了说明最终应该怎样执行一个流处理程序,Flink 需要将逻辑流图进行解析,转换为物理数据流图。
按照生成顺序可以分成四层:
逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)。
-
逻辑流图(StreamGraph)
这是根据用户通过 DataStream API 编写的代码生成的最初的 DAG 图,用来表示程序的拓扑结构。这一步一般在客户端完成。
源算子 Source(socketTextStream())→扁平映射算子 Flat Map(flatMap()) →分组聚合算子Keyed Aggregation(keyBy/sum()) →输出算子 Sink(print())。
-
作业图(JobGraph) : JobGraph 一般也是在客户端生成的,在作业提交时传递给 JobMaster。
主要的优化为: 将多个符合条件的节点链接在一起合并成一个任务节点,形成算子链,这样可以减少数据交换的消耗。
-
执行图(ExecutionGraph)
JobMaster 收到 JobGraph 后,会根据它来生成执行图(ExecutionGraph)。ExecutionGraph是 JobGraph 的并行化版本,是调度层最核心的数据结构。与 JobGraph 最大的区别就是按照并行度对并行子任务进行了拆分,并明确了任务间数据传输的方式。
-
物理图(Physical Graph)
JobMaster 生成执行图后, 会将它分发给 TaskManager;各个 TaskManager 会根据执行图部署任务,最终的物理执行过程也会形成一张"图",一般就叫作物理图(Physical Graph)。这只是具体执行层面的图,并不是一个具体的数据结构。
5.任务(Tasks)和任务槽(Task Slots)
-
任务槽(Task Slots)
Flink 中每一个 worker(也就是 TaskManager)都是一个 JVM 进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask).
每个任务槽(task slot)其实表示了 TaskManager 拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。
假如一个 TaskManager 有三个 slot,那么它会将管理的内存平均分成三份,每个 slot 独自占据一份。这样一来,我们在 slot 上执行一个子任务时,相当于划定了一块内存"专款专用",就不需要跟来自其他作业的任务去竞争内存资源了。所以现在我们只要 2 个 TaskManager,就可以并行处理分配好的 5 个任务了。
具体来说,如果一个 TaskManager 只有一个 slot,那将意味着每个任务都会运行在独立的JVM 中(当然,该 JVM 可能是通过一个特定的容器启动的);而一个 TaskManager 设置多个slot 则意味着多个子任务可以共享同一个 JVM。它们的区别在于:前者任务之间完全独立运行,隔离级别更高、彼此间的影响可以降到最小;而后者在同一个 JVM 进程中运行的任务,将共享 TCP 连接和心跳消息,也可能共享数据集和数据结构,这就减少了每个任务的运行开销,在降低隔离级别的同时提升了性能。需要注意的是,slot 目前仅仅用来隔离内存,不会涉及 CPU 的隔离。在具体应用时,可以将 slot 数量配置为机器的 CPU 核心数,尽量避免不同任务之间对 CPU 的竞争。这也是开发环境默认并行度设为机器 CPU 数量的原因。
- 任务槽和并行度的关系
slot数量(TaskManager * taskmanager.numberOfTaskSlots) >= job并行度(算子最大的并行度)job才可正常运行。
3. flink部署模式
1. 会话模式(Session Mode)
会话模式其实最符合常规思维。我们需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所以所有提交的作业会竞争集群中的资源。话模式比较适合于单个规模小、执行时间短的大量作业。
2. 单作业模式(Per-Job Mode)
会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式。
作业完成后,集群就会关闭,所有资源也会释放。
这些特性使得单作业模式在生产环境运行更加稳定,所以是实际应用的首选模式。
需要注意的是,Flink本身无法直接这样运行,所以单作业业模式一般需要借助一些资源管理框架来启动集群,比如YARN、Kubernetes(K8S)
3. 应用模式(Application Mode)
前面提到的两种模式下,应用代码都是在客户端上执行,然后由客户端提交给JobManager的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManagger;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗。
所以解决办法就是,我们不要客户端了,直接把应用提交到JobManger上运行。而这也就代表着,我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束之后JobManager也就关闭了,这就是所谓的应用模式。应用模式与单作业模式,都是提交作业之后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由JobManager执行应用程序的。
总结一下,在会话模式下,集群的生命周期独立于集群上运行的任何作业的生命周期,并且提交的所有作业共享资源。而单作业模式为每个提交的作业创建一个集群,带来了更好的资源隔离,这时集群的生命周期与作业的生命周期绑定。最后,应用模式为每个应用程序创建一个会话集群,在 JobManager 上直接调用应用程序的 main()方法。
4. Flink 运行时架构
Flink 的运行时架构中,最重要的就是两大组件:作业管理器(JobManger)和任务管理器(TaskManager)。对于一个提交执行的作业,JobManager 是真正意义上的"管理者"(Master),负责管理调度,所以在不考虑高可用的情况下只能有一个;而 TaskManager 是"工作者"
(Worker、Slave),负责执行任务处理数据,所以可以有一个或多个。