3d gaussian splatting介绍整理

3D 高斯分布是用于实时辐射场渲染的 3D 高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。

paper
github

本文翻译整理自:
blog: Introduction to 3D Gaussian Splatting
DDPMs - Part 2

给出一些2D图片,用colmap得到稀疏 (SfM) 点,可重建出逼真的3D场景。

3DGS的核心是光栅化技术。

这类似于计算机图形学中的三角形光栅化,用于在屏幕上绘制许多三角形。

图片来自blog

但是,它不是三角形,是高斯。

这里补充一些高斯相关:

正态分布

多元正态分布

协方差

协方差矩阵

每个元素(i, j) 定义了向量的两个随机变量的协方差。

而且对角线上的元素

下面看下两个随机变量负协方差,0协方差,正协方差时的分布

这是负协方差 3维看上去的效果,从顶上看就是上面的左图,从侧面看是高斯分布。45度更加平坦。

各向同性高斯

一个例子:

回到3D高斯,既然是3D,那就是3个变量(x, y, z)

它由以下参数描述:

位置:所在的位置 (XYZ)

协方差:如何拉伸/缩放(3x3 矩阵)

颜色:它是什么颜色(RGB)

Alpha : 透明度 (α)

3个的高斯叠加在一起的效果:

那么700万高斯叠加的效果呢。

运行步骤:

1.运动结构

第一步是使用运动结构 (SfM) 方法从一组图像中估计点云。这是一种从一组 2D 图像估计 3D 点云的方法。这可以通过COLMAP库来完成。

2.转换为高斯分布

接下来,每个点都转换为高斯分布。这对于光栅化来说已经足够了。然而,只能从 SfM 数据推断位置和颜色。为了学习产生高质量结果的表示,需要对其进行训练。

3.训练

训练过程使用随机梯度下降,类似于神经网络,但没有layers。训练步骤为:

使用可微分高斯光栅化将高斯光栅化为图像(稍后详细介绍)

根据光栅化图像和groud truth图像之间的差异计算损失

根据损失调整高斯参数

应用自动致密化和修剪

步骤 1-3 从概念上讲非常简单。第 4 步涉及以下内容:

如果对于给定的高斯梯度很大(即它太错误),则分割/克隆它

如果高斯很小,则克隆它

如果高斯很大,则将其分割

如果高斯的 alpha 太低,将其删除

此过程有助于高斯更好地拟合细粒度细节,同时修剪不必要的高斯。

4.可微分高斯光栅化

如前所述,3D 高斯分布是一种光栅化方法,它将数据绘制到屏幕上。

一些重要的元素还包括:

快速

可微分

光栅化涉及:

从相机角度将每个高斯投影为 2D。

按深度对高斯进行排序。

对于每个像素,从前到后迭代每个高斯,将它们混合在一起。

paper中描述了其他优化。

相关推荐
mahuifa42 分钟前
OpenCV 开发 -- 图像阈值处理
人工智能·opencv·计算机视觉
闲人编程44 分钟前
图像去雾算法:从物理模型到深度学习实现
图像处理·人工智能·python·深度学习·算法·计算机视觉·去雾
咔咔学姐kk1 小时前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
Caaacy_YU1 小时前
多模态大模型研究每日简报【2025-09-10】
论文阅读·人工智能·深度学习·机器学习·计算机视觉
云边云科技1 小时前
门店网络重构:告别“打补丁”,用“云网融合”重塑数字竞争力!
大数据·人工智能·安全·智能路由器·零售
山海青风2 小时前
12 Prompt 模板化与参数化
人工智能·prompt
山海青风2 小时前
11 Prompt 工程进阶:Few-shot 与 Chain-of-Thought
人工智能·prompt
爱看科技2 小时前
AI/AR智能眼镜步入全球破圈增长期,五大科技大厂入局加剧生态市场角逐
人工智能·科技·ar
人有一心2 小时前
深度学习里的树模型TabNet
人工智能·深度学习
强盛小灵通专卖员2 小时前
边缘计算设备NPU的加速原理
人工智能·深度学习·边缘计算·sci·中文核心·小论文