3d gaussian splatting介绍整理

3D 高斯分布是用于实时辐射场渲染的 3D 高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。

paper
github

本文翻译整理自:
blog: Introduction to 3D Gaussian Splatting
DDPMs - Part 2

给出一些2D图片,用colmap得到稀疏 (SfM) 点,可重建出逼真的3D场景。

3DGS的核心是光栅化技术。

这类似于计算机图形学中的三角形光栅化,用于在屏幕上绘制许多三角形。

图片来自blog

但是,它不是三角形,是高斯。

这里补充一些高斯相关:

正态分布

多元正态分布

协方差

协方差矩阵

每个元素(i, j) 定义了向量的两个随机变量的协方差。

而且对角线上的元素

下面看下两个随机变量负协方差,0协方差,正协方差时的分布

这是负协方差 3维看上去的效果,从顶上看就是上面的左图,从侧面看是高斯分布。45度更加平坦。

各向同性高斯

一个例子:

回到3D高斯,既然是3D,那就是3个变量(x, y, z)

它由以下参数描述:

位置:所在的位置 (XYZ)

协方差:如何拉伸/缩放(3x3 矩阵)

颜色:它是什么颜色(RGB)

Alpha : 透明度 (α)

3个的高斯叠加在一起的效果:

那么700万高斯叠加的效果呢。

运行步骤:

1.运动结构

第一步是使用运动结构 (SfM) 方法从一组图像中估计点云。这是一种从一组 2D 图像估计 3D 点云的方法。这可以通过COLMAP库来完成。

2.转换为高斯分布

接下来,每个点都转换为高斯分布。这对于光栅化来说已经足够了。然而,只能从 SfM 数据推断位置和颜色。为了学习产生高质量结果的表示,需要对其进行训练。

3.训练

训练过程使用随机梯度下降,类似于神经网络,但没有layers。训练步骤为:

使用可微分高斯光栅化将高斯光栅化为图像(稍后详细介绍)

根据光栅化图像和groud truth图像之间的差异计算损失

根据损失调整高斯参数

应用自动致密化和修剪

步骤 1-3 从概念上讲非常简单。第 4 步涉及以下内容:

如果对于给定的高斯梯度很大(即它太错误),则分割/克隆它

如果高斯很小,则克隆它

如果高斯很大,则将其分割

如果高斯的 alpha 太低,将其删除

此过程有助于高斯更好地拟合细粒度细节,同时修剪不必要的高斯。

4.可微分高斯光栅化

如前所述,3D 高斯分布是一种光栅化方法,它将数据绘制到屏幕上。

一些重要的元素还包括:

快速

可微分

光栅化涉及:

从相机角度将每个高斯投影为 2D。

按深度对高斯进行排序。

对于每个像素,从前到后迭代每个高斯,将它们混合在一起。

paper中描述了其他优化。

相关推荐
bu_shuo10 分钟前
将AI生成的数学公式正确复制到word中
人工智能·chatgpt·word·latex
AI科技星13 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
摘星编程16 分钟前
RAG的下一站:检索增强生成如何重塑企业知识中枢?
android·人工智能
军军君0118 分钟前
Three.js基础功能学习七:加载器与管理器
开发语言·前端·javascript·学习·3d·threejs·三维
Aaron_94519 分钟前
BitNet:1-bit大语言模型的高效推理框架详解
人工智能·语言模型·自然语言处理
wenzhangli720 分钟前
「1+3 架构驱动」OoderAI 企业级解决方案:破解 AI 落地三大痛点,实现能力可控、交互智能与代码一致
人工智能
视觉&物联智能24 分钟前
【杂谈】-人工智能在风险管理中的应用:愿景与现实的差距
人工智能·网络安全·ai·aigc·agi
寻星探路28 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
知识分享小能手30 分钟前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04中的人工智能—— 知识点详解 (25)
人工智能·学习·ubuntu
cyyt30 分钟前
深度学习周报(1.05~1.11)
人工智能·深度学习