3d gaussian splatting介绍整理

3D 高斯分布是用于实时辐射场渲染的 3D 高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。

paper
github

本文翻译整理自:
blog: Introduction to 3D Gaussian Splatting
DDPMs - Part 2

给出一些2D图片,用colmap得到稀疏 (SfM) 点,可重建出逼真的3D场景。

3DGS的核心是光栅化技术。

这类似于计算机图形学中的三角形光栅化,用于在屏幕上绘制许多三角形。

图片来自blog

但是,它不是三角形,是高斯。

这里补充一些高斯相关:

正态分布

多元正态分布

协方差

协方差矩阵

每个元素(i, j) 定义了向量的两个随机变量的协方差。

而且对角线上的元素

下面看下两个随机变量负协方差,0协方差,正协方差时的分布

这是负协方差 3维看上去的效果,从顶上看就是上面的左图,从侧面看是高斯分布。45度更加平坦。

各向同性高斯

一个例子:

回到3D高斯,既然是3D,那就是3个变量(x, y, z)

它由以下参数描述:

位置:所在的位置 (XYZ)

协方差:如何拉伸/缩放(3x3 矩阵)

颜色:它是什么颜色(RGB)

Alpha : 透明度 (α)

3个的高斯叠加在一起的效果:

那么700万高斯叠加的效果呢。

运行步骤:

1.运动结构

第一步是使用运动结构 (SfM) 方法从一组图像中估计点云。这是一种从一组 2D 图像估计 3D 点云的方法。这可以通过COLMAP库来完成。

2.转换为高斯分布

接下来,每个点都转换为高斯分布。这对于光栅化来说已经足够了。然而,只能从 SfM 数据推断位置和颜色。为了学习产生高质量结果的表示,需要对其进行训练。

3.训练

训练过程使用随机梯度下降,类似于神经网络,但没有layers。训练步骤为:

使用可微分高斯光栅化将高斯光栅化为图像(稍后详细介绍)

根据光栅化图像和groud truth图像之间的差异计算损失

根据损失调整高斯参数

应用自动致密化和修剪

步骤 1-3 从概念上讲非常简单。第 4 步涉及以下内容:

如果对于给定的高斯梯度很大(即它太错误),则分割/克隆它

如果高斯很小,则克隆它

如果高斯很大,则将其分割

如果高斯的 alpha 太低,将其删除

此过程有助于高斯更好地拟合细粒度细节,同时修剪不必要的高斯。

4.可微分高斯光栅化

如前所述,3D 高斯分布是一种光栅化方法,它将数据绘制到屏幕上。

一些重要的元素还包括:

快速

可微分

光栅化涉及:

从相机角度将每个高斯投影为 2D。

按深度对高斯进行排序。

对于每个像素,从前到后迭代每个高斯,将它们混合在一起。

paper中描述了其他优化。

相关推荐
Blossom.1182 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer3 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic3 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天4 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU4 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec4 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz5 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子5 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor