基于YOLOv8的摄像头吸烟行为检测系统(Python源码+Pyqt6界面+数据集)

💡💡💡本文主要内容:详细介绍了摄像头下吸烟行为检测系统,在介绍算法原理的同时,给出Pytorch的源码、训练数据集以及PyQt6的UI界面。在界面中可以选择各种图片、视频进行检测识别,可进行置信度、Iou阈值设定,结果可视化等。

1.数据集介绍

通过摄像头采集吸烟行为,共采集1812张图片 进行标注,按照8:1:1进行训练集、验证集、测试集随机区分。

细节图如下:

1.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

1.2 通过voc_label.py生成txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val']
classes = ["smoke"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

通过图像判断属于小目标检测

1.3 小目标定义

1)以物体检测领域的通用数据集COCO物体定义为例,小目标是指小于32×32个像素点(中物体是指32*32-96*96,大物体是指大于96*96);

2)在实际应用场景中,通常更倾向于使用相对于原图的比例来定义:物体标注框的长宽乘积,除以整个图像的长宽乘积,再开根号,如果结果小于3%,就称之为小目标;

2.基于YOLOv8的摄像头吸烟行为检测

2.1 修改smoke.yaml

path: ./ultralytics-smoke/data/smoke # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images
 
# number of classes
nc: 1
 
# class names
names:
  0: smoke

2.2开启训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/smoke/smoke.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                batch=16,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                # resume='', # last.pt path
                # amp=False # close amp
                # fraction=0.2,
                project='runs/train',
                name='exp',
                )

3.训练结果分析

Validating runs\train\exp\weights\best.pt...
Ultralytics YOLOv8.1.2 🚀 Python-3.8.18 torch-1.11.0+cu113 CUDA:0 (NVIDIA GeForce RTX 3070, 8192MiB)
YOLOv8 summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 11/11 [00:09<00:00,  1.22it/s]
                   all        326        402      0.901      0.813      0.902      0.519
Speed: 0.2ms preprocess, 2.3ms inference, 0.0ms loss, 0.7ms postprocess per image
Results saved to runs\train\exp

confusion_matrix.png :列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。

上图是摄像头吸烟行为检测训练,有图可以看出 ,分别是smoke和background FP。该图在每列上进行归一化处理。则可以看出破损检测预测正确的概率为82%。

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

labels_correlogram.jpg :显示数据的每个轴与其他轴之间的对比。图像中的标签位于 xywh 空间。

labels.jpg :

(1,1)表示每个类别的数据量

(1,2)真实标注的 bounding_box

(2,1) 真实标注的中心点坐标

(2,2)真实标注的矩阵宽高

P_curve.png:表示准确率与置信度的关系图线,横坐标置信度。由下图可以看出置信度越高,准确率越高。

PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

R_curve.png :召回率与置信度之间关系

results.png

mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

预测结果:

4. 摄像头吸烟行为检测系统设计

4.1 PySide6介绍

受益于人工智能的崛起,Python语言几乎以压倒性优势在众多编程语言中异军突起,成为AI时代的首选语言。在很多情况下,我们想要以图形化方式将我们的人工智能算法打包提供给用户使用,这时候选择以python为主的GUI框架就非常合适了。

PySide是Qt公司的产品,PyQt是第三方公司的产品,二者用法基本相同,不过在使用协议上却有很大差别。PySide可以在LGPL协议下使用,PyQt则在GPL协议下使用。

PySide目前常见的有两个版本:PySide2和PySide6。PySide2由C++版的Qt5开发而来.,而PySide6对应的则是C++版的Qt6。从PySide6开始,PySide的命名也会与Qt的大版本号保持一致,不会再出现类似PySide2对应Qt5这种容易混淆的情况。

4.2 安装PySide6

pip install --upgrade pip
pip install pyside6 -i https://mirror.baidu.com/pypi/simple

基于PySide6开发GUI程序包含下面三个基本步骤:

  • 设计GUI,图形化拖拽或手撸;
  • 响应UI的操作(如点击按钮、输入数据、服务器更新),使用信号与Slot连接界面和业务;
  • 打包发布;

4.3 摄像头吸烟行为检测系统设计

运行

python main.py

关注下方名片,即可获取源码。

相关推荐
GIS数据转换器几秒前
VR+智慧消防一体化决策平台
人工智能·数码相机·无人机·智慧城市·知识图谱·vr
世优科技虚拟人1 分钟前
世优波塔数字人 AI 大屏再升级:让智能展厅讲解触手可及
大数据·人工智能·科技·gpt·信息可视化·ai作画·gpu算力
q567315233 分钟前
利用Python实现Union-Find算法
android·python·算法
晒足以百八十5 分钟前
数据挖掘实训:基于CEEMDAN与多种机器学习模型股票预测与时间序列建模
python·机器学习·数据挖掘
next_travel6 分钟前
计算机视觉目标检测-DETR网络
人工智能·目标检测·计算机视觉
岸榕.7 分钟前
551 灌溉
数据结构·c++·算法
晒足以百八十8 分钟前
数据挖掘实训:天气数据分析与机器学习模型构建
人工智能·机器学习
湫ccc9 分钟前
《机器学习》从入门到实战——决策树
人工智能·决策树·机器学习
浪前11 分钟前
【算法】移除元素
开发语言·数据结构·算法
程序猿阿伟14 分钟前
《量子比特大阅兵:不同类型量子比特在人工智能领域的优劣势剖析》
人工智能·量子计算