通过Opencv进行角点检测

目录

引入

介绍

①使用的主要函数介绍

②实际例子解释

③自相似性是什么?


引入

我们想要获取图片上的角点,就要用到我们的harris角点检测

介绍

①使用的主要函数介绍

cv2.cornerHarris()

  • img: 数据类型为 float32 的入图像

不是float32的数据要使用,np.float32()转换为float32

  • blockSize: 角点检测中指定区域的大小

指定检测框的区域大小

  • ksize: Sobel求导中使用的窗口大小 一般设置为3即可,即表示为3x3大小的

Sobel求导中使用的窗口大小就是使用sobel算子进行边缘检测那个,是这样的:

sobel算子 x 原始图像 = 边缘图像

  • k:判断时候的比例系数 设为 0.04~0.06都可以

②实际例子解释

我们对如下图片进行角点检测

代码:

python 复制代码
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

可能疑惑点解释:

img[dst>0.01*dst.max()]=[0,0,255]

整体过程(主要在于自相似性):

dst为我们计算完的所有点,将它和dst里面最大值的0.01倍进行比较(因为最大值肯定是个角点[自相似性]),

如果大于了表明可能是个角点,我们把它的颜色设置为[0,0,255]红色画出来

结果


③自相似性是什么?

自相似性公式:

总体来说就是判断差异大不大,和边界检测有点类似:

I(u,v) - I(u + x, v + y) 的差值大的话,那他就是个角点

相关推荐
MoRanzhi120333 分钟前
亲和传播聚类算法应用(Affinity Propagation)
人工智能·python·机器学习·数学建模·scikit-learn·聚类
金融OG34 分钟前
99.23 金融难点通俗解释:小卖部经营比喻PPI(生产者物价指数)vsCPI(消费者物价指数)
人工智能·python·机器学习·数学建模·金融·数据可视化
艾醒(AiXing-w)1 小时前
玩转大语言模型——使用langchain和Ollama本地部署大语言模型
人工智能·语言模型·langchain
小周不摆烂1 小时前
解锁计算机视觉算法:从理论到代码实战
计算机视觉
我的青春不太冷1 小时前
2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
人工智能·深度学习·ncnn·mnn·在线模型转换网址
云卷云舒___________1 小时前
【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorch&Torchvision安装】
人工智能·pytorch·yolo·教程·jetson·torchvision
zxfeng~1 小时前
深度学习之“线性代数”
人工智能·python·深度学习·线性代数
油泼辣子多加1 小时前
Diffusion--人工智能领域的革命性技术
人工智能
东锋1.32 小时前
NVIDIA (英伟达)的 GPU 产品应用领域
人工智能