通过Opencv进行角点检测

目录

引入

介绍

①使用的主要函数介绍

②实际例子解释

③自相似性是什么?


引入

我们想要获取图片上的角点,就要用到我们的harris角点检测

介绍

①使用的主要函数介绍

cv2.cornerHarris()

  • img: 数据类型为 float32 的入图像

不是float32的数据要使用,np.float32()转换为float32

  • blockSize: 角点检测中指定区域的大小

指定检测框的区域大小

  • ksize: Sobel求导中使用的窗口大小 一般设置为3即可,即表示为3x3大小的

Sobel求导中使用的窗口大小就是使用sobel算子进行边缘检测那个,是这样的:

sobel算子 x 原始图像 = 边缘图像

  • k:判断时候的比例系数 设为 0.04~0.06都可以

②实际例子解释

我们对如下图片进行角点检测

代码:

python 复制代码
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

可能疑惑点解释:

img[dst>0.01*dst.max()]=[0,0,255]

整体过程(主要在于自相似性):

dst为我们计算完的所有点,将它和dst里面最大值的0.01倍进行比较(因为最大值肯定是个角点[自相似性]),

如果大于了表明可能是个角点,我们把它的颜色设置为[0,0,255]红色画出来

结果


③自相似性是什么?

自相似性公式:

总体来说就是判断差异大不大,和边界检测有点类似:

I(u,v) - I(u + x, v + y) 的差值大的话,那他就是个角点

相关推荐
新加坡内哥谈技术32 分钟前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康41 分钟前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
智驱力人工智能1 小时前
基于视觉分析的人脸联动使用手机检测系统 智能安全管理新突破 人脸与手机行为联动检测 多模态融合人脸与手机行为分析模型
算法·安全·目标检测·计算机视觉·智能手机·视觉检测·边缘计算
Sirius Wu2 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5442 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running2 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界3 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔4 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起4 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰4 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习