通过Opencv进行角点检测

目录

引入

介绍

①使用的主要函数介绍

②实际例子解释

③自相似性是什么?


引入

我们想要获取图片上的角点,就要用到我们的harris角点检测

介绍

①使用的主要函数介绍

cv2.cornerHarris()

  • img: 数据类型为 float32 的入图像

不是float32的数据要使用,np.float32()转换为float32

  • blockSize: 角点检测中指定区域的大小

指定检测框的区域大小

  • ksize: Sobel求导中使用的窗口大小 一般设置为3即可,即表示为3x3大小的

Sobel求导中使用的窗口大小就是使用sobel算子进行边缘检测那个,是这样的:

sobel算子 x 原始图像 = 边缘图像

  • k:判断时候的比例系数 设为 0.04~0.06都可以

②实际例子解释

我们对如下图片进行角点检测

代码:

python 复制代码
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

可能疑惑点解释:

img[dst>0.01*dst.max()]=[0,0,255]

整体过程(主要在于自相似性):

dst为我们计算完的所有点,将它和dst里面最大值的0.01倍进行比较(因为最大值肯定是个角点[自相似性]),

如果大于了表明可能是个角点,我们把它的颜色设置为[0,0,255]红色画出来

结果


③自相似性是什么?

自相似性公式:

总体来说就是判断差异大不大,和边界检测有点类似:

I(u,v) - I(u + x, v + y) 的差值大的话,那他就是个角点

相关推荐
Light602 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升2 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide3 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农3 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews3 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体3 小时前
机器人的罪与罚
人工智能·机器人
三不原则3 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM3 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员3 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay3 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全