通过Opencv进行角点检测

目录

引入

介绍

①使用的主要函数介绍

②实际例子解释

③自相似性是什么?


引入

我们想要获取图片上的角点,就要用到我们的harris角点检测

介绍

①使用的主要函数介绍

cv2.cornerHarris()

  • img: 数据类型为 float32 的入图像

不是float32的数据要使用,np.float32()转换为float32

  • blockSize: 角点检测中指定区域的大小

指定检测框的区域大小

  • ksize: Sobel求导中使用的窗口大小 一般设置为3即可,即表示为3x3大小的

Sobel求导中使用的窗口大小就是使用sobel算子进行边缘检测那个,是这样的:

sobel算子 x 原始图像 = 边缘图像

  • k:判断时候的比例系数 设为 0.04~0.06都可以

②实际例子解释

我们对如下图片进行角点检测

代码:

python 复制代码
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

可能疑惑点解释:

img[dst>0.01*dst.max()]=[0,0,255]

整体过程(主要在于自相似性):

dst为我们计算完的所有点,将它和dst里面最大值的0.01倍进行比较(因为最大值肯定是个角点[自相似性]),

如果大于了表明可能是个角点,我们把它的颜色设置为[0,0,255]红色画出来

结果


③自相似性是什么?

自相似性公式:

总体来说就是判断差异大不大,和边界检测有点类似:

I(u,v) - I(u + x, v + y) 的差值大的话,那他就是个角点

相关推荐
新手村领路人9 分钟前
qt5.14.2 opencv调用摄像头显示在label
qt·opencv·命令模式
虾球xz13 分钟前
游戏引擎学习第290天:完成分离渲染
c++·人工智能·学习·游戏引擎
暖季啊29 分钟前
分割一切(SAM) 论文阅读:Segment Anything
论文阅读·人工智能·神经网络
可爱美少女35 分钟前
Predict Podcast Listening Time-(回归+特征工程+xgb)
人工智能·数据挖掘·回归
深度学习入门1 小时前
学习深度学习是否要先学习机器学习?
人工智能·深度学习·神经网络·学习·机器学习·ai·深度学习入门
dog2501 小时前
BBR 的 buffer 动力学观感
人工智能·算法
python1561 小时前
使用Langfuse和RAGAS,搭建高可靠RAG应用
人工智能·windows·python
虾球xz2 小时前
游戏引擎学习第281天:在房间之间为摄像机添加动画效果
c++·人工智能·学习·游戏引擎
冷yan~2 小时前
GitHub文档加载器设计与实现
java·人工智能·spring·ai·github·ai编程
AI大模型系统化学习2 小时前
Excel MCP: 自动读取、提炼、分析Excel数据并生成可视化图表和分析报告
人工智能·ai·大模型·ai大模型·大模型学习·大模型入门·mcp