通过Opencv进行角点检测

目录

引入

介绍

①使用的主要函数介绍

②实际例子解释

③自相似性是什么?


引入

我们想要获取图片上的角点,就要用到我们的harris角点检测

介绍

①使用的主要函数介绍

cv2.cornerHarris()

  • img: 数据类型为 float32 的入图像

不是float32的数据要使用,np.float32()转换为float32

  • blockSize: 角点检测中指定区域的大小

指定检测框的区域大小

  • ksize: Sobel求导中使用的窗口大小 一般设置为3即可,即表示为3x3大小的

Sobel求导中使用的窗口大小就是使用sobel算子进行边缘检测那个,是这样的:

sobel算子 x 原始图像 = 边缘图像

  • k:判断时候的比例系数 设为 0.04~0.06都可以

②实际例子解释

我们对如下图片进行角点检测

代码:

python 复制代码
import cv2
import numpy as np

img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

可能疑惑点解释:

img[dst>0.01*dst.max()]=[0,0,255]

整体过程(主要在于自相似性):

dst为我们计算完的所有点,将它和dst里面最大值的0.01倍进行比较(因为最大值肯定是个角点[自相似性]),

如果大于了表明可能是个角点,我们把它的颜色设置为[0,0,255]红色画出来

结果


③自相似性是什么?

自相似性公式:

总体来说就是判断差异大不大,和边界检测有点类似:

I(u,v) - I(u + x, v + y) 的差值大的话,那他就是个角点

相关推荐
吴佳浩30 分钟前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI37 分钟前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维1 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术1 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20231 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud2 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云2 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都2 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间2 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息2 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全