12.1 主成分分析原理(PCA)

主成分分析步骤如下:

设有维数据

  1. 将原始数据按列组成列矩阵

  2. 将矩阵 的每一行进行零均值化;

  3. 求出协方差矩阵

  4. 求出协方差矩阵的特征值及对应的特征向量;

  5. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前行组成矩阵

  6. 即为降维到维后的数据。

如果对线性代数的实对成矩阵的相似对角化熟悉的人可以很好的了解上面的步骤,根据线性代数的求解步骤如下(也可以是代码步骤,python的np有求解方法):

  1. 将原始数据按列组成列矩阵

  2. 将矩阵 的每一行进行零均值化;

这里的每一行零均值化就是每一行的元素减去该行的均值,均值可以用np.mean()求解。

3.求出协方差矩阵;这个矩阵实际上就是实对称矩阵。

4.求出协方差矩阵的特征值及对应的特征向量;

这里其实就是对实对称矩阵相似对角化,在相似对角化的过程中会得到特征值和对应的特征向量,得到的对角矩阵的对角线上的元素就是特征值,对角线以外的元素都为0。(当然,要对这组特征向量进行正交化,因为我们最终要的是正交向量,如果在这里不求,也可以在最后一步求个向量的正交向量,计算量肯定比现在求小,因为现在要求个向量,而最后只需要求个)。

  1. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前行组成矩阵

6.这里就是对特征值做从大到小的排序,可以用np.sorted()函数排序。

7.然后根据排序取前行的向量组成一个新的矩阵。

相关推荐
飞哥数智坊13 分钟前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠1 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶4 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云4 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术4 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新4 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心5 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算5 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位5 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算5 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯