12.1 主成分分析原理(PCA)

主成分分析步骤如下:

设有维数据

  1. 将原始数据按列组成列矩阵

  2. 将矩阵 的每一行进行零均值化;

  3. 求出协方差矩阵

  4. 求出协方差矩阵的特征值及对应的特征向量;

  5. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前行组成矩阵

  6. 即为降维到维后的数据。

如果对线性代数的实对成矩阵的相似对角化熟悉的人可以很好的了解上面的步骤,根据线性代数的求解步骤如下(也可以是代码步骤,python的np有求解方法):

  1. 将原始数据按列组成列矩阵

  2. 将矩阵 的每一行进行零均值化;

这里的每一行零均值化就是每一行的元素减去该行的均值,均值可以用np.mean()求解。

3.求出协方差矩阵;这个矩阵实际上就是实对称矩阵。

4.求出协方差矩阵的特征值及对应的特征向量;

这里其实就是对实对称矩阵相似对角化,在相似对角化的过程中会得到特征值和对应的特征向量,得到的对角矩阵的对角线上的元素就是特征值,对角线以外的元素都为0。(当然,要对这组特征向量进行正交化,因为我们最终要的是正交向量,如果在这里不求,也可以在最后一步求个向量的正交向量,计算量肯定比现在求小,因为现在要求个向量,而最后只需要求个)。

  1. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前行组成矩阵

6.这里就是对特征值做从大到小的排序,可以用np.sorted()函数排序。

7.然后根据排序取前行的向量组成一个新的矩阵。

相关推荐
先做个垃圾出来………2 小时前
哈夫曼树(Huffman Tree)
数据结构·算法
Mr数据杨2 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339862 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
phoenix@Capricornus3 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
Inverse1624 小时前
C语言_动态内存管理
c语言·数据结构·算法
zhz52144 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师4 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
武科大许志伟4 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技4 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco4 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos