机器学习复习(4)——CNN算法

目录

数据增强方法

CNN图像分类数据集构建

导入数据集

定义trainer

超参数设置

数据增强

构建CNN网络

开始训练

模型测试

数据增强方法

python 复制代码
# 一般情况下,我们不会在验证集和测试集上做数据扩增
# 我们只需要将图片裁剪成同样的大小并装换成Tensor就行
test_tfm = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
])

# 当然,我们也可以再测试集中对数据进行扩增(对同样本的不同装换)
#  - 用训练数据的装化方法(train_tfm)去对测试集数据进行转化,产出扩增样本
#  - 对同个照片的不同样本分别进行预测
#  - 最后可以用soft vote / hard vote 等集成方法输出最后的预测
train_tfm = transforms.Compose([
    # 图片裁剪 (height = width = 128)
    transforms.Resize((128, 128)),
    transforms.AutoAugment(transforms.AutoAugmentPolicy.IMAGENET),
    # ToTensor() 放在所有处理的最后
    transforms.ToTensor(),
])

CNN图像分类数据集构建

python 复制代码
class FoodDataset(Dataset):
    # 构造函数
    def __init__(self, path, tfm=test_tfm, files=None):
        # 调用父类的构造函数
        super(FoodDataset).__init__()
        # 存储图像文件夹路径
        self.path = path
        # 从路径中获取所有以.jpg结尾的文件,并按字典顺序排序
        self.files = sorted([os.path.join(path, x) for x in os.listdir(path) if x.endswith(".jpg")])
        # 如果提供了文件列表,则使用该列表代替自动搜索得到的列表
        if files is not None:
            self.files = files
        # 打印路径中的一个样本文件路径
        print(f"One {path} sample", self.files[0])
        # 存储用于图像变换的函数
        self.transform = tfm
    # 返回数据集中的样本数
    def __len__(self):
        return len(self.files)
    # 根据索引获取单个样本
    def __getitem__(self, idx):
        # 获取文件名
        fname = self.files[idx]
        # 打开图像文件
        im = Image.open(fname)
        # 应用变换
        im = self.transform(im)
        # 尝试从文件名中提取标签,如果失败则设置为-1(表示测试集中没有标签)
        try:
            label = int(fname.split("/")[-1].split("_")[0])
        except:
            label = -1  # 测试集没有label
        # 返回图像和标签
        return im, label

导入数据集

注意这里的"私有方法"

python 复制代码
_dataset_dir = config['dataset_dir']#"_"是为了避免和python中的dataset重名

train_set = FoodDataset(os.path.join(_dataset_dir,"training"), tfm=train_tfm)
train_loader = DataLoader(train_set, batch_size=config['batch_size'], 
                          shuffle=True, num_workers=0, pin_memory=True)

valid_set = FoodDataset(os.path.join(_dataset_dir,"validation"), tfm=test_tfm)
valid_loader = DataLoader(valid_set, batch_size=config['batch_size'], 
                          shuffle=True, num_workers=0, pin_memory=True)

# 测试级保证输出顺序一致
test_set = FoodDataset(os.path.join(_dataset_dir,"test"), tfm=test_tfm)
test_loader = DataLoader(test_set, batch_size=config['batch_size'], 
                         shuffle=False, num_workers=0, pin_memory=True)

定义trainer

python 复制代码
def trainer(train_loader, valid_loader, model, config, device, rest_net_flag=False):
    # 定义交叉熵损失函数,用于评估分类任务的模型性能
    criterion = nn.CrossEntropyLoss()

    # 初始化优化器,这里使用Adam优化器
    optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate'], weight_decay=config['weight_decay'])

    # 根据rest_net_flag标志选择模型保存路径
    save_path = config['save_path'] if rest_net_flag else config['resnet_save_path']

    # 初始化TensorBoard的SummaryWriter,用于记录训练过程
    writer = SummaryWriter()

    # 如果'models'目录不存在,则创建该目录
    if not os.path.isdir('./models'):
        os.mkdir('./models')

    # 初始化训练参数:训练轮数、最佳损失、步骤计数器和早停计数器
    n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0

    # 进行多个训练周期
    for epoch in range(n_epochs):
        # 设置模型为训练模式
        model.train()

        # 初始化损失记录器和准确率记录器
        loss_record = []
        train_accs = []

        # 使用tqdm显示训练进度条
        train_pbar = tqdm(train_loader, position=0, leave=True)

        # 遍历训练数据
        for x, y in train_pbar:
            # 重置优化器梯度
            optimizer.zero_grad()

            # 将数据和标签移动到指定设备(如GPU)
            x, y = x.to(device), y.to(device)

            # 进行一次前向传播
            pred = model(x)

            # 计算损失
            loss = criterion(pred, y)

            # 反向传播
            loss.backward()

            # 如果启用梯度裁剪,则应用梯度裁剪
            if config['clip_flag']:
                grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)

            # 进行一步优化(梯度下降)
            optimizer.step()

            # 记录当前步骤
            step += 1

            # 计算准确率并记录损失和准确率
            acc = (pred.argmax(dim=-1) == y.to(device)).float().mean()
            l_ = loss.detach().item()
            loss_record.append(l_)
            train_accs.append(acc.detach().item())
            train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')
            train_pbar.set_postfix({'loss': f'{l_:.5f}', 'acc': f'{acc:.5f}'})

        # 计算并记录平均训练损失和准确率
        mean_train_acc = sum(train_accs) / len(train_accs)
        mean_train_loss = sum(loss_record) / len(loss_record)
        writer.add_scalar('Loss/train', mean_train_loss, step)
        writer.add_scalar('ACC/train', mean_train_acc, step)

        # 设置模型为评估模式
        model.eval()

        # 初始化验证集损失记录器和准确率记录器
        loss_record = []
        test_accs = []

        # 遍历验证数据
        for x, y in valid_loader:
            x, y = x.to(device), y.to(device)
            with torch.no_grad():
                pred = model(x)
                loss = criterion(pred, y)
                acc = (pred.argmax(dim=-1) == y.to(device)).float().mean()

            loss_record.append(loss.item())
            test_accs.append(acc.detach().item())

        # 计算并打印平均验证损失和准确率
        mean_valid_acc = sum(test_accs) / len(test_accs)
        mean_valid_loss = sum(loss_record) / len(loss_record)
        print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, acc: {mean_train_acc:.4f} Valid loss: {mean_valid_loss:.4f}, acc: {mean

超参数设置

python 复制代码
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
    'seed': 6666,
    'dataset_dir': "../input/data",
    'n_epochs': 10,      
    'batch_size': 64, 
    'learning_rate': 0.0003,           
    'weight_decay':1e-5,
    'early_stop': 300,
    'clip_flag': True, 
    'save_path': './models/model.ckpt',
    'resnet_save_path': './models/resnet_model.ckpt'
}
print(device)
all_seed(config['seed'])

数据增强

python 复制代码
test_set = FoodDataset(os.path.join(_dataset_dir,"test"), tfm=train_tfm)
test_loader_extra1 = DataLoader(test_set, batch_size=config['batch_size'], 
                                shuffle=False, num_workers=0, pin_memory=True)

test_set = FoodDataset(os.path.join(_dataset_dir,"test"), tfm=train_tfm)
test_loader_extra2 = DataLoader(test_set, batch_size=config['batch_size'], 
                                shuffle=False, num_workers=0, pin_memory=True)

test_set = FoodDataset(os.path.join(_dataset_dir,"test"), tfm=train_tfm)
test_loader_extra3 = DataLoader(test_set, batch_size=config['batch_size'], 
                                shuffle=False, num_workers=0, pin_memory=True)

构建CNN网络

python 复制代码
class Classifier(nn.Module):
    def __init__(self):
        super(Classifier, self).__init__()
        # input 維度 [3, 128, 128]
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 64, 3, 1, 1),  # [64, 128, 128]
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),      # [64, 64, 64]

            nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64]
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),      # [128, 32, 32]

            nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32]
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),      # [256, 16, 16]

            nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16]
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),       # [512, 8, 8]
            
            nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8]
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2, 2, 0),       # [512, 4, 4]
        )
        self.fc = nn.Sequential(
            nn.Linear(512*4*4, 1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Linear(512, 11)
        )

    def forward(self, x):
        out = self.cnn(x)
        out = out.view(out.size()[0], -1)
        return self.fc(out)

举一个具体的例子来解释: out = out.view(out.size()[0], -1)

假设我们有一个4维的张量 out,其维度是 [10, 3, 32, 32]。这个张量可以被理解为一个小批量(batch)的图像数据,其中:

  • 10 是批处理大小(batch size),表示有10个图像。
  • 3 是通道数(channels),例如在RGB图像中有3个颜色通道。
  • 3232 是图像的高度和宽度。

现在,我们想将这个4维张量转换为2维张量,以便它可以被用作全连接层(dense layer)的输入。这就是 out.view(out.size()[0], -1) 用途所在。

执行这个操作后,张量的形状将会是:

  • 第一个维度仍然是10,这保持了批处理大小不变。
  • 第二个维度是由-1指定的,这让PyTorch自动计算这个维度的大小。在我们的例子中,其余的维度(3, 32, 32)将被展平,所以第二个维度的大小是 3 * 32 * 32 = 3072。

因此,执行 out = out.view(out.size()[0], -1) 后,out 的形状将会从 [10, 3, 32, 32] 变为 [10, 3072]。这个新的二维张量可以被看作是一个包含10个样本的数据批次,每个样本都被展平为3072个特征的一维数组。这种形状的张量适合作为全连接层的输入。

1. Conv2d(卷积层)

卷积层的输出尺寸可以用以下公式计算:

其中:

  • 输入尺寸是输入特征图的高度或宽度。
  • 卷积核尺寸是卷积核的高度或宽度。
  • 填充(Padding)是在输入特征图周围添加的零的层数。
  • 步长(Stride)是卷积核移动的步幅。

2. MaxPool2d(最大池化层)

最大池化层的输出尺寸可以用类似的公式计算:

对于最大池化,通常不使用填充
假设我们有一个大小为[32, 32](高度32,宽度32)的输入特征图,并且我们想应用以下两个层:

  1. Conv2d层,卷积核大小为[3, 3],步长为1,填充为1
  2. MaxPool2d层,池化核大小为[2, 2],步长为2

对于Conv2d层,输出尺寸计算如下:

对于MaxPool2d层,输出尺寸计算如下:

所以,经过这两层处理后,最终输出的特征图尺寸将会是[16, 16]

开始训练

python 复制代码
model = Classifier().to(device)
trainer(train_loader, valid_loader, model, config, device)

或者可以通过调用pytorch官方的一些标准model进行训

python 复制代码
from torchvision.models import resnet50
resNet = resnet50(pretrained=False)
# 残差网络
resNet = resNet.to(device)
trainer(train_loader, valid_loader, resNet, config, device)

模型测试

python 复制代码
model_best = Classifier().to(device)
model_best.load_state_dict(torch.load(config['save_path']))
model_best.eval()
prediction = []
with torch.no_grad():
    for data,_ in test_loader:
        test_pred = model_best(data.to(device))
        test_label = np.argmax(test_pred.cpu().data.numpy(), axis=1)
        prediction += test_label.squeeze().tolist()
相关推荐
hsling松子2 小时前
使用PaddleHub智能生成,献上浓情国庆福
人工智能·算法·机器学习·语言模型·paddlepaddle
正在走向自律2 小时前
机器学习框架
人工智能·机器学习
好吃番茄3 小时前
U mamba配置问题;‘KeyError: ‘file_ending‘
人工智能·机器学习
CV-King4 小时前
opencv实战项目(三十):使用傅里叶变换进行图像边缘检测
人工智能·opencv·算法·计算机视觉
禁默4 小时前
2024年计算机视觉与艺术研讨会(CVA 2024)
人工智能·计算机视觉
slomay5 小时前
关于对比学习(简单整理
经验分享·深度学习·学习·机器学习
whaosoft-1435 小时前
大模型~合集3
人工智能
Dream-Y.ocean5 小时前
文心智能体平台AgenBuilder | 搭建智能体:情感顾问叶晴
人工智能·智能体
丶21365 小时前
【CUDA】【PyTorch】安装 PyTorch 与 CUDA 11.7 的详细步骤
人工智能·pytorch·python
春末的南方城市6 小时前
FLUX的ID保持项目也来了! 字节开源PuLID-FLUX-v0.9.0,开启一致性风格写真新纪元!
人工智能·计算机视觉·stable diffusion·aigc·图像生成