基本介绍
Qwen 基础模型已经稳定训练了大规模高质量且多样化的数据,覆盖多语言(当前以中文和英文为主),Qwen 目前有多个版本:1.8B、7B、14B、72B,同时还开源了 Qwen-VL、Qwen-Audio 两款多模态模型。阿里可以算得上是业界良心,是目前唯一一家开源 72B 这个这个量级 Chat 版本模型的公司(智谱开源了 130B 的 GLM 可惜不是 Chat 版本),各模型特点和所需硬件条件如下:
环境配置
首先进入 Qwen 官方的 Github 拉取项目:github.com/QwenLM/Qwen 并安装相应依赖。
python
git clone https://github.com/QwenLM/Qwen.git
cd Qwen
pip install -r requirements.txt
模型下载
考虑到不是所有的读者都有足够的算力,本专栏使用 Qwen-1.8B-Chat(非基座模型)作为示例。Qwen 模型的下载方式挺多的,可以选择使用 huggingface 下载模型:
python
# 方式一:利用命令行下载
git lfs install
git clone https://huggingface.co/Qwen/Qwen-1_8B-Chat
# 方式二:利用 python 代码下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen-1_8B-Chat', cache_dir="./model")
国内一般情况下由于网络原因用上述方案可能难以下载,也可以选择借助魔搭社区下载模型。
python
# 方式一:利用命令行下载
git lfs install
git clone https://www.modelscope.cn/qwen/Qwen-1_8B-Chat.git
# 方式二:利用 python 代码下载
#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen-1_8B-Chat', cache_dir="./model")
模型调用
这是简单的一种调用方式,使用 transformers 库进行调用,可以测试环境配置和模型下载是否正确:
python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
# 加载模型和 tokenizer
tokenizer = AutoTokenizer.from_pretrained("./model/Qwen/Qwen-1_8B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"./model/qwen/Qwen-1_8B-Chat",
device_map="auto",
trust_remote_code=True
).eval()
# 配置模型参数
model.generation_config = GenerationConfig.from_pretrained("./model/Qwen/Qwen-1_8B-Chat", trust_remote_code=True)
# 获取模型输出并返回历史记录
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
其中 device_map 用于设置调用模型的设备, 可以选择"cpu", "auto", "balanced", "balanced_low_0", "sequential":
python
# "auto" 和 "balanced" 将会在所有的 GPU 上平衡切分模型,那么可以计算批尺寸大于 1 的输入
# "balanced_low_0" 会在除了第一个 GPU 上的其它 GPU 上平衡划分模型,并且在第一个 GPU 上占据较少资源。这个选项符合需要在第一个 GPU 上进行额外操作的需求,例如需要在第一个 GPU 执行 generate 函数(迭代过程)。
# "sequential" 按照GPU的顺序分配模型分片,从 GPU 0 开始,直到最后的 GPU(那么最后的 GPU 往往不会被占满,和"balanced_low_0"的区别就是第一个还是最后一个,以及非均衡填充)
# 同时可以利用 accelerate 库的 infer_auto_device_map 函数自己设置每个设备上最大占用多少显存或内存
from accelerate import infer_auto_device_map
device_map = infer_auto_device_map(model, max_memory={0: "10GiB", 1: "10GiB", "cpu": "30GiB"})
print(model.hf_device_map)
同时官方推荐显卡支持 fp16 或 bf16 精度的用户安装 flash-attention 以提高运行效率并降低显存占用:
python
git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && pip install .
# 下方安装可选,安装可能比较缓慢。
# pip install csrc/layer_norm
# 如果flash-attn版本高于2.1.1,下方无需安装。
# pip install csrc/rotary
GenerationConfig 中可以配置多种参数以控制模型输出(也可以不写以调用默认参数):
python
# temperature:控制生成文本的多样性。较高的温度值(例如1.0)会使生成的文本更加随机,而较低的温度值(例如0.2)会使生成的文本更加确定性。
# top_k:控制生成文本时,模型会考虑的最高概率的词的数量。较小的top_k值会限制模型只考虑概率最高的几个词,从而增加生成文本的多样性。
# top_p:控制生成文本时,模型会考虑的累积概率的阈值。较小的top_p值会限制模型只考虑累积概率高于阈值的词,从而增加生成文本的多样性。
# repetition_penalty:用于抑制生成文本中重复词语的参数。较大的repetition_penalty值会降低重复词语的概率。
# do_sample:指示模型是否使用采样方法生成文本。当设置为True时,模型会根据概率分布随机选择下一个词语;当设置为False时,模型会根据概率分布选择概率最高的词语。
# pad_token_id:用于填充序列的特殊标记的ID。
# eos_token_id:用于表示输入序列结束的特殊标记的ID。
# min_new_tokens:生成文本时,要求至少生成的新词语数量。
# max_new_tokens:生成文本时,要求最多生成的新词语数量。
model.generation_config = GenerationConfig.from_pretrained(
temperature=0.8,
top_k=5,
repetition_penalty=1.2,
do_sample=True,
return_unused_kwargs=True
)
以下实现了一个多轮对话的脚本,可以更方便地进行模型性能测试(输入"clc"后可清空历史聊天记录),同时可以设置系统提示词指定模型行为模式:
python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
class Qwen:
def __init__(self):
path = "./model/Qwen/Qwen-1_8B-Chat"
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(
path,
device_map="auto",
trust_remote_code=True
).eval()
def clear_screen(self):
os.system('clear')
return [], ""
def chat_qwen(self, System_Prompt):
history, history = self.clear_screen()
while True:
prompt = input("user:")
if prompt.lower() == "clc":
history, history = self.clear_screen()
continue
# System Prompts 可以设定模型的行为模式,例如人物设定、语言风格、任务模式、甚至针对具体问题的具体行为。
response, history = self.model.chat(self.tokenizer, prompt, history=history, system=System_Prompt)
print("assistant:", response, end="\n\n")
if __name__ == '__main__':
qwen = Qwen()
qwen.chat_qwen(System_Prompt="请用外婆的语气和我说话")