大白话理解大语言模型预训练和微调

引言

在人工智能的黄金时代,预训练模型已成为推动技术发展的驱动力。这些模型通过自回归和生成式的核心特性,为语言理解和生成开辟了新天地。本文将探讨这两种模型的特性及其对大模型预训练的影响。

一、自回归模型的魔法 自回归模型是预训练过程中的关键。这种模型通过考虑之前的所有输出来预测下一个词,就像我们填写完形填空题一样。它们是顺序模型,意味着它们一步步地构建序列,每一步只生成一个词。

例如,考虑句子:"我喜欢吃..."。自回归模型会考虑"我喜欢吃"这个上下文来预测接下来最可能出现的词。这种方法非常符合我们人类阅读和理解语言的自然过程。

二、生成式模型的潜能 生成式模型,如其名,不仅预测下一个词的概率,还能生成新的词汇。这种模型在预测下一个词时引入了随机性,它不会简单地选择最可能的词,而是从可能的词汇分布中进行抽样,增加了语言的多样性和创造性。

GPT(Generative Pre-trained Transformer)是一个自回归生成式模型的经典例子。它结合了自回归模型的严密性和生成式模型的创新性,能够在没有针对性训练数据的情况下,通过少量的提示(Few-Shot Learning)或者没有提示(Zero-Shot Learning)来生成合理的文本。

三、自回归与生成式:双剑合璧 自回归和生成式模型在预训练语言模型中并不冲突,而是相辅相成。在GPT这样的模型中,自回归模型首先确定下一个词的概率分布,然后生成式模型再基于这个分布生成下一个词。

四、双向自回归的进步 除了自回归,还有一种双向自回归模型,如BERT和GLM。它们在预测时会同时考虑前文和后文,提供了对上下文的更深层理解。这种方法让模型不仅能够根据之前的词进行预测,还能够利用后续的词来提高预测的准确性。

五、从生成式到判别模型 尽管生成式模型在早期不如判别模型那样流行,但随着计算能力的增强和数据集的扩大,生成式模型展示了其强大的潜力。与判别模型不同,生成式模型不只是学习输入到输出的映射关系,它们尝试学习数据的整体分布。

六、预训练与微调 大语言模型通过预训练在大量数据上学习语言规律,这个过程可以类比为"读书百遍其义自现"。模型参数越多、输入的数据越丰富,模型理解语言的能力就越强。然而,预训练只是开始,微调则是将模型的通用语言能力转化为解决特定任务能力的过程。通过微调,我们可以让模型更好地适应新的任务和场景。

相关推荐
冰西瓜6006 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术6 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技7 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路7 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟7 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆8 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站8 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats9 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星9 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器9 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游