基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码)

一、优化模型介绍

移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner = ∑ i ∈ N ′ F i miner s.t. C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max {\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =i∈N′∑Fiminer C1:mi∈{0,1},∀i∈NC2:pmin≤pi≤pmax,∀i∈N′C3:fmin≤fi≤fmax,∀i∈N′C4:i∈N′∑fi≤ftotal C5:FMSP≥0C6:Tit+Tim+Tio≤Timax,∀i∈N′

其中:

C1表示每个矿工可以决定是否参与挖矿;

C2 指定分配给每个参与矿机的最小和最大传输功率;

C3 表示分配给每个参与矿工的最小和最大计算资源;

C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;

C5保证MSP的利润不小于0;

C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。

在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。

上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log {2}\left(1+\frac{p{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1−Pio)−c1Eit−c2fi,∀i∈N′Ri=Blog2(1+σ2+∑j∈N′\imjpjHjpiHi),∀i∈N′Tit=RiDi,∀i∈N′Tim=fiDiXi,∀i∈N′Eim=k1fi3Tim,∀i∈N′Pim=Timk2,∀i∈N′FMSP=i∈N′∑(c2fi−c3Eim)−c3E0Pio=1−e−λ(Tio+Tis)=1−e−λ(zDi+Tit),∀i∈N′

二、差分进化算法求解

差分进化算法(Differential Evolution Algorithm,DE)是一种全局优化算法,它基于群体的启发式搜索。每个个体对应一个解向量,DE的进化流程包括变异、杂交和选择操作。与遗传算法相比,差分进化算法的操作定义有所不同,但整体思想相似。

差分进化算法的描述如下:

  1. 初始化种群,随机生成一组解向量。
  2. 变异操作:选择三个不同的个体,通过变异公式将它们融合成一个变异解。
  3. 交叉操作:将变异解的每个参数与原解的对应参数进行比较,根据一定概率选择新解或旧解的值,形成交叉解。
  4. 选择操作:将交叉解与原解进行比较,选择较优的解作为下一次循环的解。
  5. 重复进行2-4步骤,直到满足停止条件(例如达到最大迭代次数或找到满意的解)。

差分进化算法相对于遗传算法的优势在于简单易实现,但也有很多变种和改进方法,可以根据具体情况选择适合的算法。

2.1部分MATLAB代码

bash 复制代码
close all
clear 
clc
dbstop if all error
t=1;
for NP=50:50:300
para = parametersetting(NP);
para.MaxFEs =6000;%最大迭代次数
Result(t)=Compute(NP,para);
t=t+1;
end
QQ=50:50:300;
LenG={};
StrCor={'r-','g--','b-','c-','m--','k-.','y-'};
figure
for i=1:t-1
    plot(Result(i).FitCurve,StrCor{i},'linewidth',3)
    hold on
    LenG{i}=['N=' num2str(QQ(i))];
    Data(i)=Result(i).FitCurve(end);
end
legend(LenG)
xlabel('FEs')
ylabel('Token')

figure
bar(Data)
hold on
plot(Data,'r-o','linewidth',3)
set(gca,'xtick',1:1:t-1);
set(gca,'XTickLabel',LenG)
ylabel('Token')

2.2部分结果

当矿工数量为50 100 150 200 250 300 350时:所有矿工的利润随迭代次数的变化如下图所示

当矿工数量为50 时,差分进化算法得到的最优策略

bash 复制代码
1.70961903063870	0.915057108482030
1.97884581710515	0.136309993850076
1.82063040644361	0.475380964903532
1.43793030306619	0.714888695101324
1.82063040644361	0.900636150747992
1.61403687280477	0.230326490177402
1.44882104170844	0.475380964903532
1.92948288208559	0.679024405084065
1.97217203090381	0.475380964903532
1.89759336207038	0.230000959720043
1.84465608318310	0.577481991007684
1.88386265861916	0.403219304807995
1.98275518824349	0.184344657691976
1.88386265861916	0.690069920918526
1.99454958480856	0.714888695101324
1.64205969743127	0.154575948291039
1.92820145682232	0.738160805429999
1.97531511718751	0.486581365313851
1.89124702129147	0.998483429338209
1.85753262962595	0.784929891371303
0.206794357912299	0.475380964903532
1.98519754174442	0.625966057957844
1.95031384568391	0.890794551305381
1.63613228590527	0.757641108127655
1.58453437629969	0.572035284258508
1.95992990908977	0.588978363106915
1.99454958480856	0.157923330009538
1.87752509446173	0.861874778071472
1.73388961758303	0.0182505268364460
1.97884581710515	0.679546185110974
1.72577419634882	0.733875154051102
1.92979930893703	0.845620688312287
1.81981689329417	0.475380964903532
1.85753262962595	0.358725775264239
1.98275518824349	0.820915129741387
1.88386265861916	0.890794551305381
1.96549917117933	0.403219304807995
1.64287348500743	0.960178855853379
1.66476223036004	0.836742870036493
1.82259751216598	0.588978363106915
1.65625788695821	0.0534368180687056
1.99019691658474	0.0783551639914413
1.96083706050509	0.676355368865015
1.94280042487603	0.0425319119217820
1.92820145682232	0.958717191748582
1.92948288208559	0.739401704264659
1.97181148757610	0.619487787865644
1.83599108308744	0.921117032842475
0.796709687090485	0.626280644353691
1.95852658388316	0.0203334852718414

三、完整MATLAB代码

相关推荐
MATLAB代码顾问9 分钟前
MATLAB实现决策树数值预测
开发语言·决策树·matlab
没有钱的钱仔32 分钟前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起35 分钟前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
SunnyDays101144 分钟前
如何使用Python高效转换Excel到HTML
python·excel转html
priority_key1 小时前
排序算法:堆排序、快速排序、归并排序
java·后端·算法·排序算法·归并排序·堆排序·快速排序
Q_Q5110082851 小时前
python+django/flask的在线学习系统的设计与实现 积分兑换礼物
spring boot·python·django·flask·node.js·php
化作星辰1 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya1 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清1 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
不染尘.2 小时前
2025_11_7_刷题
开发语言·c++·vscode·算法