B样条基函数

​定义:令U={u0,u1,...,um}是一个单调不减的实数序列,即ui≤ui+1,i=0,1,...,m-1。其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次(p+1阶)B样条基函数,其定义为

由此可知:

(1)Ni,0(u)是一个阶梯函数,它在半开区间u∈[ui,ui+1)外都为零;

(2)当p>0时,Ni,p(u)是两个p-1次基函数的线性组合;

(3)计算一组基函数时需要事先制定节点矢量U和次数p;

(4)定义式中可能出现0/0,我们规定0/0=0;

(5)Ni,p(u)是定义在整个实数轴上的分段多项式函数,但我们一般只对它在区间[u0,um]上的部分感兴趣;

(6)半开区间[ui,ui+1)称为第i个节点区间(knot span),它的长度可以为零,因为相邻节点可以是相同的;

(7)计算p次基函数的生成过程生成一个如下形式的三角形阵列:

为了书写方便,我们通常将Ni,p(u)写为Ni,p。

性质:

(1)(局部支撑性)如果u∉[ui,ui+p+1),则Ni,p(u)=0。

(2)在任意给定的节点区间[uj,uj+1)内,最多p+1个Ni,p是非零的,它们是Nj-p,p,...,Nj,p。

(3)(非负性)对于所有的i,p和u,有Ni,p(u)≥0。

(4)(规范性)对于任意的节点区间[ui,ui+1),当u∈[ui,ui+1)时

(5)(可微性)在节点区间内部,Ni,p(u)是无限次可微的。

(6)除p=0的情况外,Ni,p(u)严格地达到最大值一次。

cpp 复制代码
#include<iostream>
int FindSpan(int n,int p,double u,double* U)
/*
    计算参数u所在区间的下标
    返回参数u所在节点区间的下标,即u所在的区间[ui,ui+1]的i
    U=[u0,u1,u2,...,um]
    n:节点数组最大下标-1,n=m-1
    p:次数
    u:参数
    U:节点数组
    */
{
    if(u==U[n+1])
    {
        return n;
    }
    int low=p;
    int high=n+1;
    int mid=(low+high)/2;
    while(u<U[mid] or u>=U[mid+1])
    {
        if(u<U[mid])
        {
            high=mid;
        }
        else
        {
            low=mid;
        }
        mid=(low+high)/2;
    }
    return mid;
}
void BasisFuns(int i,double u,int p,double* U,double* N)
/*
    计算非零B样条基函数的值
    i:参数u所在节点区间的下标,即u所在的区间[ui,ui+1]的i
    p:次数
    u:参数
    U:节点数组
    N:B样条基函数值数组N(i,i-p),...,N(i,p)
    */
{
    double temp=0.0;
    double saved=0.0;
    double left[p+1];
    double right[p+1];
    N[0]=1.0;
    for(int j=1;j<=p;j++)
    {
        left[j]=u-U[i+1-j];
        right[j]=U[i+j]-u;
        saved=0.0;
        for(int r=0;r<j;r++)
        {
            temp=N[r]/(right[r+1]+left[j-r]);
            N[r]=saved+right[r+1]*temp;
            saved=left[j-r]*temp;
        }
        N[j]=saved;
    }
}
int main()
{
    int n=10;
    const int p=2;
    double u=5.0/2;
    double U[]={0,0,0,1,2,3,4,4,5,5,5};
    double N[p+1];
    BasisFuns(4,u,p,U,N);
    std::cout<<FindSpan(n,p,u,U)<<std::endl;
    for(int i=0;i<=p;i++)
    {
        std::cout<<N[i]<<std::endl;
    }
    system("pause");
}
​
相关推荐
じ☆冷颜〃1 天前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学1 天前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
数据大魔方1 天前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE31 天前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
fpcc1 天前
C++编程实践——链式调用的实践
c++
楚来客1 天前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
HyperAI超神经1 天前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
Echo_NGC22371 天前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁1 天前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
橘颂TA1 天前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法