B样条基函数

​定义:令U={u0,u1,...,um}是一个单调不减的实数序列,即ui≤ui+1,i=0,1,...,m-1。其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次(p+1阶)B样条基函数,其定义为

由此可知:

(1)Ni,0(u)是一个阶梯函数,它在半开区间u∈[ui,ui+1)外都为零;

(2)当p>0时,Ni,p(u)是两个p-1次基函数的线性组合;

(3)计算一组基函数时需要事先制定节点矢量U和次数p;

(4)定义式中可能出现0/0,我们规定0/0=0;

(5)Ni,p(u)是定义在整个实数轴上的分段多项式函数,但我们一般只对它在区间[u0,um]上的部分感兴趣;

(6)半开区间[ui,ui+1)称为第i个节点区间(knot span),它的长度可以为零,因为相邻节点可以是相同的;

(7)计算p次基函数的生成过程生成一个如下形式的三角形阵列:

为了书写方便,我们通常将Ni,p(u)写为Ni,p。

性质:

(1)(局部支撑性)如果u∉[ui,ui+p+1),则Ni,p(u)=0。

(2)在任意给定的节点区间[uj,uj+1)内,最多p+1个Ni,p是非零的,它们是Nj-p,p,...,Nj,p。

(3)(非负性)对于所有的i,p和u,有Ni,p(u)≥0。

(4)(规范性)对于任意的节点区间[ui,ui+1),当u∈[ui,ui+1)时

(5)(可微性)在节点区间内部,Ni,p(u)是无限次可微的。

(6)除p=0的情况外,Ni,p(u)严格地达到最大值一次。

cpp 复制代码
#include<iostream>
int FindSpan(int n,int p,double u,double* U)
/*
    计算参数u所在区间的下标
    返回参数u所在节点区间的下标,即u所在的区间[ui,ui+1]的i
    U=[u0,u1,u2,...,um]
    n:节点数组最大下标-1,n=m-1
    p:次数
    u:参数
    U:节点数组
    */
{
    if(u==U[n+1])
    {
        return n;
    }
    int low=p;
    int high=n+1;
    int mid=(low+high)/2;
    while(u<U[mid] or u>=U[mid+1])
    {
        if(u<U[mid])
        {
            high=mid;
        }
        else
        {
            low=mid;
        }
        mid=(low+high)/2;
    }
    return mid;
}
void BasisFuns(int i,double u,int p,double* U,double* N)
/*
    计算非零B样条基函数的值
    i:参数u所在节点区间的下标,即u所在的区间[ui,ui+1]的i
    p:次数
    u:参数
    U:节点数组
    N:B样条基函数值数组N(i,i-p),...,N(i,p)
    */
{
    double temp=0.0;
    double saved=0.0;
    double left[p+1];
    double right[p+1];
    N[0]=1.0;
    for(int j=1;j<=p;j++)
    {
        left[j]=u-U[i+1-j];
        right[j]=U[i+j]-u;
        saved=0.0;
        for(int r=0;r<j;r++)
        {
            temp=N[r]/(right[r+1]+left[j-r]);
            N[r]=saved+right[r+1]*temp;
            saved=left[j-r]*temp;
        }
        N[j]=saved;
    }
}
int main()
{
    int n=10;
    const int p=2;
    double u=5.0/2;
    double U[]={0,0,0,1,2,3,4,4,5,5,5};
    double N[p+1];
    BasisFuns(4,u,p,U,N);
    std::cout<<FindSpan(n,p,u,U)<<std::endl;
    for(int i=0;i<=p;i++)
    {
        std::cout<<N[i]<<std::endl;
    }
    system("pause");
}
​
相关推荐
真的想上岸啊16 分钟前
c语言第一个小游戏:贪吃蛇小游戏05
c语言·算法·链表
aminghhhh21 分钟前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
格林威24 分钟前
Baumer工业相机堡盟工业相机的工业视觉是否可以在室外可以做视觉检测项目
c++·人工智能·数码相机·计算机视觉·视觉检测
追烽少年x27 分钟前
C++11异步编程 --- async
c++
元亓亓亓40 分钟前
LeetCode热题100--206.反转链表--简单
算法·leetcode·链表
诚丞成1 小时前
BFS算法篇——从晨曦到星辰,BFS算法在多源最短路径问题中的诗意航行(上)
java·算法·宽度优先
hongjianMa1 小时前
2024睿抗编程赛国赛-题解
算法·深度优先·图论·caip
努力毕业的小土博^_^1 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
czy87874751 小时前
两种常见的C语言实现64位无符号整数乘以64位无符号整数的实现方法
c语言·算法
虾球xz1 小时前
游戏引擎学习第277天:稀疏实体系统
c++·学习·游戏引擎