[机器学习]简单线性回归——梯度下降法

一.梯度下降法概念

2.代码实现

python 复制代码
# 0. 引入依赖
import numpy as np
import matplotlib.pyplot as plt

# 1. 导入数据(data.csv)
points = np.genfromtxt('data.csv', delimiter=',')
points[0,0]

# 提取points中的两列数据,分别作为x,y
x = points[:, 0]
y = points[:, 1]

# 用plt画出散点图
# plt.scatter(x, y)
# plt.show()

# 2. 定义损失函数:最小平方损失函数
# 损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w, b, points):
    total_cost = 0
    M = len(points)

    # 逐点计算平方损失误差,然后求平均数
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        total_cost += (y - w * x - b) ** 2

    return total_cost / M

# 3. 定义模型的超参数
alpha = 0.0001 # 根据实际去调节
initial_w = 0 # 初始w,可以随机生成
initial_b = 0 # 初始b,可以随机生成
num_iter = 10 # 迭代次数

# 4. 定义核心梯度下降算法函数
def grad_desc(points, initial_w, initial_b, alpha, num_iter):
    w = initial_w
    b = initial_b
    # 定义一个list保存所有的损失函数值,用来显示下降的过程
    cost_list = []

    # 迭代,获取每次的损失函数值以及更行w、b
    for i in range(num_iter):
        cost_list.append(compute_cost(w, b, points))
        w, b = step_grad_desc(w, b, alpha, points)

    return [w, b, cost_list]


def step_grad_desc(current_w, current_b, alpha, points):
    sum_grad_w = 0
    sum_grad_b = 0
    M = len(points)

    # 对每个点,代入公式求和
    for i in range(M):
        x = points[i, 0]
        y = points[i, 1]
        sum_grad_w += (current_w * x + current_b - y) * x
        sum_grad_b += current_w * x + current_b - y

    # 用公式求当前梯度
    grad_w = 2 / M * sum_grad_w
    grad_b = 2 / M * sum_grad_b

    # 梯度下降,更新当前的w和b
    updated_w = current_w - alpha * grad_w
    updated_b = current_b - alpha * grad_b

    return updated_w, updated_b

# 5. 测试:运行梯度下降算法计算最优的w和b
w, b, cost_list = grad_desc( points, initial_w, initial_b, alpha, num_iter )

print("w is: ", w)
print("b is: ", b)

cost = compute_cost(w, b, points)

print("cost is: ", cost)

# plt.plot(cost_list)
# plt.show() # 画图

# 6. 画出拟合曲线
plt.scatter(x, y)
# 针对每一个x,计算出预测的y值
pred_y = w * x + b

plt.plot(x, pred_y, c='r')
plt.show()

w is: 1.4774173755483797

b is: 0.02963934787473238

cost is: 112.65585181499748

3.代码及数据下载

简单线性回归-最小二乘法及梯度下降法资源-CSDN文库

相关推荐
阿坡RPA8 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049938 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c11 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清12 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员12 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物12 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技