TensorFlow2实战-系列教程14:Resnet实战2

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

Resnet实战1
Resnet实战2
Resnet实战3

4、训练脚本train.py解读------创建模型

python 复制代码
def get_model():
    model = resnet50.ResNet50()
    if config.model == "resnet34":
        model = resnet34.ResNet34()
    if config.model == "resnet101":
        model = resnet101.ResNet101()
    if config.model == "resnet152":
        model = resnet152.ResNet152()

    model.build(input_shape=(None, config.image_height, config.image_width, config.channels))
    model.summary()
    
    tf.keras.utils.plot_model(model, to_file='model.png')
    return model

# create model
model = get_model()

调用get_model()函数构建模型

get_model()函数:

  1. 通过resnet50.py调用ResNet50类,构建ResNet50模型
  2. 如果在配置参数中设置的是"resnet34"、"resnet101"、"resnet152",则会对应使用(resnet34.py调用ResNet34类,构建ResNet34模型)、(resnet101.py调用ResNet101类,构建ResNet101模型)、(resnet152.py调用ResNet152类,构建ResNet152模型)
  3. 准备模型以供训练或评估,
  4. 输出模型的概览
  5. 创建了模型的结构图,plot_model 函数从 Keras 工具包中生成模型的可视化表示,指定了保存路径

5、模型构建解析------models/resnet50.py

python 复制代码
import tensorflow as tf
from models.residual_block import build_res_block_2
from config import NUM_CLASSES

class ResNet50(tf.keras.Model):
    def __init__(self, num_classes=NUM_CLASSES):
        super(ResNet50, self).__init__()
        self.pre1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='same')
        self.pre2 = tf.keras.layers.BatchNormalization()
        self.pre3 = tf.keras.layers.Activation(tf.keras.activations.relu)
        self.pre4 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)

        self.layer1 = build_res_block_2(filter_num=64, blocks=3)
        self.layer2 = build_res_block_2(filter_num=128, blocks=4, stride=2)
        self.layer3 = build_res_block_2(filter_num=256, blocks=6, stride=2)
        self.layer4 = build_res_block_2(filter_num=512, blocks=3, stride=2)

        self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
        self.fc1 = tf.keras.layers.Dense(units=1000, activation=tf.keras.activations.relu)
        self.drop_out = tf.keras.layers.Dropout(rate=0.5)
        self.fc2 = tf.keras.layers.Dense(units=num_classes, activation=tf.keras.activations.softmax)

    def call(self, inputs, training=None, mask=None):
        pre1 = self.pre1(inputs)
        pre2 = self.pre2(pre1, training=training)
        pre3 = self.pre3(pre2)
        pre4 = self.pre4(pre3)
        l1 = self.layer1(pre4, training=training)
        l2 = self.layer2(l1, training=training)
        l3 = self.layer3(l2, training=training)
        l4 = self.layer4(l3, training=training)
        avgpool = self.avgpool(l4)
        fc1 = self.fc1(avgpool)
        drop = self.drop_out(fc1)
        out = self.fc2(drop)

        return out

class ResNet50(tf.keras.Model),这个类定义了ResNet50模型的结构,以及前向传播的方式、顺序

ResNet50类解析:

  1. 构造函数,传入了预测的类别数
  2. 初始化
  3. pre1 ,定义一个二维卷积,输出64个特征图,7x7的卷积,步长为2
  4. pre2 ,定义一个批归一化
  5. pre3,定义一个ReLU激活函数
  6. pre4,一个二维的最大池化
  7. 依次通过build_res_block_2()函数定义4个残差块
  8. 定义一个全局平均池化
  9. 定义一个全连接层,输出维度为1000
  10. 定义一个dropout
  11. 定义一个输出层的全连接层
  12. 前向传播函数,传入输入值
  13. 依次经过pre1、pre2、pre3、pre4,即卷积、批归一化、ReLU、最大池化
  14. 依次经过layer1 、layer2 、layer3 、layer4 等四个残差块
  15. 将layer4 的输出经过平局池化
  16. 依次经过两个全连接层

6、模型构建解析------models/residual_block.py

  • BottleNeck类
  • build_res_block_2()函数
  • build_res_block_2()函数通过调用BottleNeck类构建残差块
python 复制代码
class BottleNeck(tf.keras.layers.Layer):
    def __init__(self, filter_num, stride=1,with_downsample=True):
        super(BottleNeck, self).__init__()
        self.with_downsample = with_downsample
        self.conv1 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(1, 1), strides=1, padding='same')
        self.bn1 = tf.keras.layers.BatchNormalization()
        self.conv2 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(3, 3), strides=stride, padding='same')
        self.bn2 = tf.keras.layers.BatchNormalization()
        self.conv3 = tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=1, padding='same')
        self.bn3 = tf.keras.layers.BatchNormalization()
        
        self.downsample = tf.keras.Sequential()
        self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=stride))
        self.downsample.add(tf.keras.layers.BatchNormalization())


    def call(self, inputs, training=None):
        identity = self.downsample(inputs)

        conv1 = self.conv1(inputs)
        bn1 = self.bn1(conv1, training=training)
        relu1 = tf.nn.relu(bn1)
        conv2 = self.conv2(relu1)
        bn2 = self.bn2(conv2, training=training)
        relu2 = tf.nn.relu(bn2)
        conv3 = self.conv3(relu2)
        bn3 = self.bn3(conv3, training=training)
        if self.with_downsample == True:
            output = tf.nn.relu(tf.keras.layers.add([identity, bn3]))
        else:
            output = tf.nn.relu(tf.keras.layers.add([inputs, bn3]))

        return output

BottleNeck类解析:

  1. 继承tf.keras.layers.Layer
  2. 构造函数,传入 特征图个数、步长、是否下采样等参数
  3. 初始化
  4. 是否进行下采样参数
  5. 定义一个1x1,步长为1的二维卷积conv1
  6. conv1 对应的批归一化
  7. 定义一个3x3,步长为1的二维卷积conv2
  8. conv2 对应的批归一化
  9. 定义一个3x3,步长为1的二维卷积conv2
  10. conv3 对应的批归一化
  11. 定义一个下采样层(self.downsample),这个层是一个包含卷积层和批量归一化的 Sequential 模型,用于匹配输入和残差的维度
  12. call()函数为前向传播
  13. 应用下采样
  14. 应用三层卷积和批量归一化以及对应的ReLU
  15. with_downsample == True:
  16. 启用下采样,将下采样后的输入(identity)与最后一个卷积层的输出(bn3)相加
  17. 没有启用下采样,将原始输入(inputs)与最后一个卷积层的输出(bn3)相加
python 复制代码
def build_res_block_2(filter_num, blocks, stride=1):
    res_block = tf.keras.Sequential()
    res_block.add(BottleNeck(filter_num, stride=stride))

    for _ in range(1, blocks):
        res_block.add(BottleNeck(filter_num, stride=1,with_downsample=False))    
        
    return res_block

build_res_block_2函数解析:

  1. 这个函数构建了一个包含多个BottleNeck层的残差块
  2. filter_num 是每个瓶颈层内卷积层的过滤器数量
  3. blocks 是要添加到顺序模型中的瓶颈层的数量
  4. stride 是卷积的步长,默认为 1
  5. 该函数初始化一个 Sequential 模型,并添加一个 BottleNeck 层作为第一层
  6. 然后,它迭代地添加额外的 BottleNeck 层,每个层的 stride=1 且
    with_downsample=False(除第一个之外)
  7. 此函数返回组装好的顺序模型,代表一个残差块

Resnet实战1
Resnet实战2
Resnet实战3

相关推荐
吴佳浩2 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3933 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99903 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1233 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
superman超哥3 小时前
仓颉语言中基本数据类型的深度剖析与工程实践
c语言·开发语言·python·算法·仓颉
春日见4 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
Learner__Q4 小时前
每天五分钟:滑动窗口-LeetCode高频题解析_day3
python·算法·leetcode
————A4 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR4 小时前
每周AI论文速递(251215-251219)
人工智能
徐先生 @_@|||5 小时前
(Wheel 格式) Python 的标准分发格式的生成规则规范
开发语言·python