TensorFlow2实战-系列教程14:Resnet实战2

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

Resnet实战1
Resnet实战2
Resnet实战3

4、训练脚本train.py解读------创建模型

python 复制代码
def get_model():
    model = resnet50.ResNet50()
    if config.model == "resnet34":
        model = resnet34.ResNet34()
    if config.model == "resnet101":
        model = resnet101.ResNet101()
    if config.model == "resnet152":
        model = resnet152.ResNet152()

    model.build(input_shape=(None, config.image_height, config.image_width, config.channels))
    model.summary()
    
    tf.keras.utils.plot_model(model, to_file='model.png')
    return model

# create model
model = get_model()

调用get_model()函数构建模型

get_model()函数:

  1. 通过resnet50.py调用ResNet50类,构建ResNet50模型
  2. 如果在配置参数中设置的是"resnet34"、"resnet101"、"resnet152",则会对应使用(resnet34.py调用ResNet34类,构建ResNet34模型)、(resnet101.py调用ResNet101类,构建ResNet101模型)、(resnet152.py调用ResNet152类,构建ResNet152模型)
  3. 准备模型以供训练或评估,
  4. 输出模型的概览
  5. 创建了模型的结构图,plot_model 函数从 Keras 工具包中生成模型的可视化表示,指定了保存路径

5、模型构建解析------models/resnet50.py

python 复制代码
import tensorflow as tf
from models.residual_block import build_res_block_2
from config import NUM_CLASSES

class ResNet50(tf.keras.Model):
    def __init__(self, num_classes=NUM_CLASSES):
        super(ResNet50, self).__init__()
        self.pre1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='same')
        self.pre2 = tf.keras.layers.BatchNormalization()
        self.pre3 = tf.keras.layers.Activation(tf.keras.activations.relu)
        self.pre4 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)

        self.layer1 = build_res_block_2(filter_num=64, blocks=3)
        self.layer2 = build_res_block_2(filter_num=128, blocks=4, stride=2)
        self.layer3 = build_res_block_2(filter_num=256, blocks=6, stride=2)
        self.layer4 = build_res_block_2(filter_num=512, blocks=3, stride=2)

        self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
        self.fc1 = tf.keras.layers.Dense(units=1000, activation=tf.keras.activations.relu)
        self.drop_out = tf.keras.layers.Dropout(rate=0.5)
        self.fc2 = tf.keras.layers.Dense(units=num_classes, activation=tf.keras.activations.softmax)

    def call(self, inputs, training=None, mask=None):
        pre1 = self.pre1(inputs)
        pre2 = self.pre2(pre1, training=training)
        pre3 = self.pre3(pre2)
        pre4 = self.pre4(pre3)
        l1 = self.layer1(pre4, training=training)
        l2 = self.layer2(l1, training=training)
        l3 = self.layer3(l2, training=training)
        l4 = self.layer4(l3, training=training)
        avgpool = self.avgpool(l4)
        fc1 = self.fc1(avgpool)
        drop = self.drop_out(fc1)
        out = self.fc2(drop)

        return out

class ResNet50(tf.keras.Model),这个类定义了ResNet50模型的结构,以及前向传播的方式、顺序

ResNet50类解析:

  1. 构造函数,传入了预测的类别数
  2. 初始化
  3. pre1 ,定义一个二维卷积,输出64个特征图,7x7的卷积,步长为2
  4. pre2 ,定义一个批归一化
  5. pre3,定义一个ReLU激活函数
  6. pre4,一个二维的最大池化
  7. 依次通过build_res_block_2()函数定义4个残差块
  8. 定义一个全局平均池化
  9. 定义一个全连接层,输出维度为1000
  10. 定义一个dropout
  11. 定义一个输出层的全连接层
  12. 前向传播函数,传入输入值
  13. 依次经过pre1、pre2、pre3、pre4,即卷积、批归一化、ReLU、最大池化
  14. 依次经过layer1 、layer2 、layer3 、layer4 等四个残差块
  15. 将layer4 的输出经过平局池化
  16. 依次经过两个全连接层

6、模型构建解析------models/residual_block.py

  • BottleNeck类
  • build_res_block_2()函数
  • build_res_block_2()函数通过调用BottleNeck类构建残差块
python 复制代码
class BottleNeck(tf.keras.layers.Layer):
    def __init__(self, filter_num, stride=1,with_downsample=True):
        super(BottleNeck, self).__init__()
        self.with_downsample = with_downsample
        self.conv1 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(1, 1), strides=1, padding='same')
        self.bn1 = tf.keras.layers.BatchNormalization()
        self.conv2 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(3, 3), strides=stride, padding='same')
        self.bn2 = tf.keras.layers.BatchNormalization()
        self.conv3 = tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=1, padding='same')
        self.bn3 = tf.keras.layers.BatchNormalization()
        
        self.downsample = tf.keras.Sequential()
        self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=stride))
        self.downsample.add(tf.keras.layers.BatchNormalization())


    def call(self, inputs, training=None):
        identity = self.downsample(inputs)

        conv1 = self.conv1(inputs)
        bn1 = self.bn1(conv1, training=training)
        relu1 = tf.nn.relu(bn1)
        conv2 = self.conv2(relu1)
        bn2 = self.bn2(conv2, training=training)
        relu2 = tf.nn.relu(bn2)
        conv3 = self.conv3(relu2)
        bn3 = self.bn3(conv3, training=training)
        if self.with_downsample == True:
            output = tf.nn.relu(tf.keras.layers.add([identity, bn3]))
        else:
            output = tf.nn.relu(tf.keras.layers.add([inputs, bn3]))

        return output

BottleNeck类解析:

  1. 继承tf.keras.layers.Layer
  2. 构造函数,传入 特征图个数、步长、是否下采样等参数
  3. 初始化
  4. 是否进行下采样参数
  5. 定义一个1x1,步长为1的二维卷积conv1
  6. conv1 对应的批归一化
  7. 定义一个3x3,步长为1的二维卷积conv2
  8. conv2 对应的批归一化
  9. 定义一个3x3,步长为1的二维卷积conv2
  10. conv3 对应的批归一化
  11. 定义一个下采样层(self.downsample),这个层是一个包含卷积层和批量归一化的 Sequential 模型,用于匹配输入和残差的维度
  12. call()函数为前向传播
  13. 应用下采样
  14. 应用三层卷积和批量归一化以及对应的ReLU
  15. with_downsample == True:
  16. 启用下采样,将下采样后的输入(identity)与最后一个卷积层的输出(bn3)相加
  17. 没有启用下采样,将原始输入(inputs)与最后一个卷积层的输出(bn3)相加
python 复制代码
def build_res_block_2(filter_num, blocks, stride=1):
    res_block = tf.keras.Sequential()
    res_block.add(BottleNeck(filter_num, stride=stride))

    for _ in range(1, blocks):
        res_block.add(BottleNeck(filter_num, stride=1,with_downsample=False))    
        
    return res_block

build_res_block_2函数解析:

  1. 这个函数构建了一个包含多个BottleNeck层的残差块
  2. filter_num 是每个瓶颈层内卷积层的过滤器数量
  3. blocks 是要添加到顺序模型中的瓶颈层的数量
  4. stride 是卷积的步长,默认为 1
  5. 该函数初始化一个 Sequential 模型,并添加一个 BottleNeck 层作为第一层
  6. 然后,它迭代地添加额外的 BottleNeck 层,每个层的 stride=1 且
    with_downsample=False(除第一个之外)
  7. 此函数返回组装好的顺序模型,代表一个残差块

Resnet实战1
Resnet实战2
Resnet实战3

相关推荐
AI视觉网奇6 分钟前
python 求内轮廓
python·opencv·计算机视觉
lczdyx7 分钟前
从Flask到智能体:装饰器模式在AI系统中的架构迁移实践
人工智能·python·语言模型·架构·flask·装饰器模式
老胖闲聊7 分钟前
Flask 请求数据获取方法详解
后端·python·flask
Acrelgq2313 分钟前
政策支持与市场驱动:充电桩可持续发展的双轮引擎
人工智能
软件测试小仙女19 分钟前
AI测试工具Testim——告别自动化测试维护难题
自动化测试·软件测试·人工智能·测试工具·单元测试·集成测试·压力测试
xieyan081141 分钟前
MCP之一_MCP协议解析
人工智能
香蕉可乐荷包蛋43 分钟前
Python面试问题
开发语言·python·面试
小华同学ai1 小时前
2.1k star! 抓紧冲,DeepChat:连接AI与个人世界的智能助手的开源项目
人工智能·ai·开源·github·工具
界面开发小八哥1 小时前
智能Python开发工具PyCharm v2025.1——AI层级功能重磅升级
ide·人工智能·python·pycharm·开发工具
汀丶人工智能1 小时前
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
人工智能