Transformer细节剖析(10): Transformer中用嵌入矩阵的转置作为线性层参数 的问题

​​​​​​

目录

[1 嵌入矩阵的转置作为线性层参数的问题](#1 嵌入矩阵的转置作为线性层参数的问题)

[2 实际使用时的注意事项](#2 实际使用时的注意事项)


abstract:

Transformer中嵌入矩阵的转置作为线性层参数

1 嵌入矩阵的转置作为线性层参数的问题

在看transformer的学习视频时,我看视频里面说了个反嵌入层,然后去查了下,结果发现竟然这个反嵌入层就是作为线性层的,于是理解了一下,然后了下面的笔记。

2 实际使用时的注意事项

  1. 在原始Transformer论文中,嵌入权重乘以dmodel​​,输出层使用相同的缩放

  2. 并非所有Transformer变体都严格遵循这一设计(如某些模型使用独立的输出投影层)

  3. 在实现中有时会添加额外的偏置项

相关推荐
笔画人生5 分钟前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
灰灰勇闯IT9 分钟前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
小白狮ww14 分钟前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
island131428 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
艾莉丝努力练剑29 分钟前
深度学习视觉任务:如何基于ops-cv定制图像预处理流程
人工智能·深度学习
禁默34 分钟前
大模型推理的“氮气加速系统”:全景解读 Ascend Transformer Boost (ATB)
人工智能·深度学习·transformer·cann
User_芊芊君子35 分钟前
CANN大模型加速核心ops-transformer全面解析:Transformer架构算子的高性能实现与优化
人工智能·深度学习·transformer
island13141 小时前
CANN ops-nn 算子库深度解析:神经网络核心计算的硬件映射、Tiling 策略与算子融合机制
人工智能·深度学习·神经网络
心疼你的一切1 小时前
数字智人:CANN加速的实时数字人生成与交互
数据仓库·深度学习·aigc·交互·cann
chaser&upper1 小时前
击穿长文本极限:在 AtomGit 破译 CANN ops-nn 的注意力加速密码
人工智能·深度学习·神经网络