【MATLAB】使用梯度提升树在回归预测任务中进行特征选择(深度学习的数据集处理)

1.梯度提升树在神经网络的应用

使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。此外,特征选择可以帮助理解数据,并为进一步的特征工程提供指导,有效地提高模型的预测性能。

梯度提升树(GBT)是一种强大的监督学习算法,常用于回归和分类问题。通过利用多棵决策树的集成学习方式,GBT 能够捕获非线性关系、处理复杂的数据结构,并对特征之间的相互作用进行建模。因此,使用梯度提升树进行特征选择可以帮助构建更简洁、高效的模型,提高预测准确性,同时保持较好的解释性。

通俗点讲就是,用科学、合理的方法去除掉数据集中不需要的特征。常用在回归预测任务的数据集处理中(也就是N个输入特征,一个输出特征)。

2.代码实现

这一部分主要是进行环境设置。关闭了 MATLAB 的警告信息显示,关闭所有先前打开的图形窗口,清除了 MATLAB 工作区中的所有变量,并清空命令窗口。

Matlab 复制代码
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口

这里是用 readtable 函数从名为 "01.csv" 的CSV文件中读取数据并将其存储在变量 data 中。如果数据文件不包含表头,则需要使用 readmatrix 函数。

Matlab 复制代码
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数

这段代码将数据拆分为特征和目标变量。其中 X 存储假设前 2000 行数据的前 6 列是特征,y 存储假设前 2000 行数据的最后一列是目标变量。

Matlab 复制代码
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量

这部分使用 fitensemble 函数构建了一个包含 100 棵树的 LSBoost 集成模型,用于回归任务。

Matlab 复制代码
ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');

在这个部分中,计算了特征的重要性得分,并将其进行了归一化处理。然后将其显示出来。

Matlab 复制代码
featureImportance = predictorImportance(ens);
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);

这一部分可视化了特征重要性得分,通过绘制条形图展示各个特征的重要性。

Matlab 复制代码
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');

这一部分代码输出了最重要的四个特征,并重新设置了图表横坐标。(笔者的数据集格式为6个输入一个输出的风力发电机功率数据集)

Matlab 复制代码
topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
xticklabels(topFeaturesNames);

3.运行结果

运行结果如下(以笔者的风力发电机数据集为例):

4.完整代码

Matlab 复制代码
%% 清空环境变量
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口
% 读取CSV文件
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数

% 将数据拆分为特征和目标变量
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量

ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');

% 计算特征的重要性分数
featureImportance = predictorImportance(ens);
% 将特征的重要性得分归一化处理
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);

% 可视化特征重要性
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');

% 根据得分排序特征
[sortedImportance, sortedIdx] = sort(normalizedFeatureImportance, 'descend');
topFeatures = sortedIdx(1:4); % 选择最重要的四个特征

% 输出最重要的特征
topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
% 重新设置图表横坐标
xticklabels(topFeaturesNames);
相关推荐
苏言の狗29 分钟前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
paixiaoxin3 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_515202493 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
吕小明么5 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
CSBLOG6 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
小陈phd6 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
王国强20097 小时前
动手学人工智能-深度学习计算5-文件读写操作
深度学习
威化饼的一隅8 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心8 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
MorleyOlsen10 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习