【Flask + AI】接入CHATGLM API 实现翻译接口

【Flask + AI】接入CHATGLM API 实现翻译接口

最近的项目中,需要加一个翻译功能,正好chatglm4发布了,于是决定着手用它实现。

https://chatglm.cn

准备

首先,在chatglm开发者中心申请api key,这里不再赘述

其次,选择自己的开发框架,这里以 flask 为例

提示词

要实现翻译功能,一个优良的提示词十分重要。

经过多次测试,得到了这样一个较为稳定的提示词。

python 复制代码
prompt_translation = """
    zh-en translation of "input".
    Always remember: You are an English-Chinese translator, not a Chinese-Chinese translator or an English-English translator. 
    Your output should only contains Chinese or English!
    You should Always just do the translate part and do not change its meaning! 
    
    example1:
    input:"write me a poem",
    output:"帮我写一首诗"
    
    example2:
    input:"你好世界",
    output:"hello world"
    
    Now I will give you my input:
"""

这个Prompt 实现了中英互译,注意,这两个例子非常重要,如果没有,模型可能会永远输出英文或者中文。在调用api时,把这个提示词设置为 assistant 可以减小模型把这段话认为是指令的概率。

接口代码

python 复制代码
@glm_blueprint.route('/api/glmTranslation', methods=['POST'])
def translation():
    user_content = request.json.get('user-content')
    if not user_content:
        return jsonify({'error': 'No user-content provided'}), 400

    contentPrompt = prompt_translation

    completion = client.chat.completions.create(
        model='glm-4',
        messages=[
            {"role": "system", "content": contentPrompt},
            {"role": "assistant", "content": user_content}
        ],
        max_tokens=200,
        temperature=0.1,
    )

    # 将 ChatCompletionMessage 对象转换为可序列化的格式
    response_message = completion.choices[0].message.content if completion.choices[0].message else "No response"

    return jsonify({"response": response_message})
  • role 设置为 assistant 或 user 效果会不同
  • 模型可以自己更改,glm-4目前效果最好
  • 如果要节省token,可以限制max_token
相关推荐
EVERSPIN2 分钟前
分享低功耗单火线开关语音识别方案
人工智能·语音识别
魔都吴所谓3 分钟前
【go】语言的匿名变量如何定义与使用
开发语言·后端·golang
说私域16 分钟前
从渠道渗透到圈层渗透:开源链动2+1模式、AI智能名片与S2B2C商城小程序的协同创新路径研究
人工智能·小程序·开源
黎燃22 分钟前
人工智能在语言学习中的实践:从 Duolingo 到自研系统的深度剖析
人工智能
骇客野人23 分钟前
使用python写一套完整的智能体小程序
开发语言·python
陈佬昔没带相机34 分钟前
围观前后端对接的 TypeScript 最佳实践,我们缺什么?
前端·后端·api
中科米堆42 分钟前
中科米堆CASAIM金属件自动3d测量外观尺寸三维检测解决方案
人工智能·3d·视觉检测
山楂树の1 小时前
模型优化——在MacOS 上使用 Python 脚本批量大幅度精简 GLB 模型(通过 Blender 处理)
python·macos·3d·图形渲染·blender
88号技师1 小时前
2025年6月最新SCI-灰熊脂肪增长优化算法Grizzly Bear Fat Increase-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
爱分享的飘哥1 小时前
第三十篇:AI的“思考引擎”:神经网络、损失与优化器的核心机制【总结前面2】
人工智能·深度学习·神经网络·优化器·损失函数·mlp·训练循环