Educational Codeforces Round 145 (Rated for Div. 2)C. Sum on Subarrays(构造)

很意思的一道构造题

题意:给一个 n 、 k n、k n、k,让构造长度为n的数组满足,子数组为整数的个数为k个,负数的为 k − ( n + 1 ) ∗ n / 2 k-(n+1)* n/2 k−(n+1)∗n/2,每个数的范围为 [ − 1000 , 1000 ] [-1000,1000] [−1000,1000]

这种构造题可以考虑就是前一段可以一直用一样的、最小的。

我们观察可以发现 k + k − ( n + 1 ) ∗ n / 2 = ( n + 1 ) ∗ n / 2 k+k-(n+1)* n/2= (n+1)* n/2 k+k−(n+1)∗n/2=(n+1)∗n/2

也就是所有子数组的个数,换句话说子数组不能有0。

这样我们很容易考虑用很小的一个负数和一个很小的正数去构造

这里我用的是 1 1 1和 − 1000 -1000 −1000

我们先考考虑一下前一段是p个1,后面全是-1000的情况这样我们得到的正数组有 ( p + 1 ) ∗ p 2 个 \frac{(p+1) * p}{2}个 2(p+1)∗p个

当 k = ( p + 1 ) ∗ p 2 k=\frac{(p+1) * p}{2} k=2(p+1)∗p时,自然皆大欢喜

当 k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)∗p时,我们考虑一下剩下的 k − ( p + 1 ) ∗ p 2 k-\frac{(p+1) * p}{2} k−2(p+1)∗p该如何臭凑出来,能增加p吗?,当p+1,我们会增加p+1个正数组,这是不行的,我们考虑的p的最大满足 k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)∗p的p,也就是说缺少的正数组个数是在 [ 1 , p ] [1,p] [1,p]

我们可以选择前面p个1中的一个将其变为1000, p + 1 p+1 p+1处的-1000遍为500,这样我们就可以添加 [ 1 , p ] [1,p] [1,p]个正数组,哪个位置的1变为1000呢?

我们可以找一下规律

弄清楚上面的事情,代码就很简单了,我们只需要而分出最后一个满足条件的p然后按照上面的构造方法放数即可

cpp 复制代码
#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back

using namespace std;

const int N=5e3+10,mod=100003,inf=(1ull<<63)-1;
int n,m,k;
int vis[N],d[N];
int a[1010],b[1010];



void solve()
{
	cin>>n>>k;
	int l=0,r=n;
	while(l<r){
		int mid=(l+r+1)>>1;
		if(mid*(mid+1)/2<=k)	l=mid;
		else	r=mid-1;
	}
	if(l*(l+1)/2==k){
		rep(i,1,l)	cout<<1<<' ';
		rep(i,l+1,n){
			if(i==l+1)	cout<<-500<<' ';
			else cout<<-1000<<' ';
		}
		cout<<endl;	
	}else{
		int d=k-(l*(l+1))/2;
		rep(i,1,l){
			if(i==d)	cout<<1000<<' ';
			else	cout<<1<<' ';
		}
		rep(i,l+1,n){
				if(i==l+1)	cout<<-500<<' ';
				else cout<<-1000<<' ';
			}	
		cout<<endl;	
	}
}

signed main(){
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//   	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}
相关推荐
zhou1855 分钟前
MySQL保姆级安装教程(附资源包+5分钟极速配置+环境变量调试技巧)
java·python·mysql·php
双叶83636 分钟前
(C语言)超市管理系统(测试版)(指针)(数据结构)(二进制文件读写)
c语言·开发语言·数据结构·c++
小雅痞37 分钟前
[Java][Leetcode middle] 55. 跳跃游戏
java·leetcode
com未来42 分钟前
使用 NSSM 安装 Tomcat 11.0.6 为 Windows 服务
java·windows·tomcat
TDengine (老段)1 小时前
基于 TSBS 标准数据集下 TimescaleDB、InfluxDB 与 TDengine 性能对比测试报告
java·大数据·开发语言·数据库·时序数据库·tdengine·iotdb
养军博客1 小时前
spring boot3.0自定义校验注解:文章状态校验示例
java·前端·spring boot
lgily-12251 小时前
常用的设计模式详解
java·后端·python·设计模式
IT成长史1 小时前
deepseek梳理java高级开发工程师微服务面试题
java·微服务
茶本无香1 小时前
Feign+Resilience4j实现微服务熔断机制:原理与实战
java·微服务·feignclient·熔断·resilience4j
遇见火星1 小时前
Ansible模块——从控制节点向目标主机复制文件!
java·服务器·ansible