Educational Codeforces Round 145 (Rated for Div. 2)C. Sum on Subarrays(构造)

很意思的一道构造题

题意:给一个 n 、 k n、k n、k,让构造长度为n的数组满足,子数组为整数的个数为k个,负数的为 k − ( n + 1 ) ∗ n / 2 k-(n+1)* n/2 k−(n+1)∗n/2,每个数的范围为 [ − 1000 , 1000 ] [-1000,1000] [−1000,1000]

这种构造题可以考虑就是前一段可以一直用一样的、最小的。

我们观察可以发现 k + k − ( n + 1 ) ∗ n / 2 = ( n + 1 ) ∗ n / 2 k+k-(n+1)* n/2= (n+1)* n/2 k+k−(n+1)∗n/2=(n+1)∗n/2

也就是所有子数组的个数,换句话说子数组不能有0。

这样我们很容易考虑用很小的一个负数和一个很小的正数去构造

这里我用的是 1 1 1和 − 1000 -1000 −1000

我们先考考虑一下前一段是p个1,后面全是-1000的情况这样我们得到的正数组有 ( p + 1 ) ∗ p 2 个 \frac{(p+1) * p}{2}个 2(p+1)∗p个

当 k = ( p + 1 ) ∗ p 2 k=\frac{(p+1) * p}{2} k=2(p+1)∗p时,自然皆大欢喜

当 k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)∗p时,我们考虑一下剩下的 k − ( p + 1 ) ∗ p 2 k-\frac{(p+1) * p}{2} k−2(p+1)∗p该如何臭凑出来,能增加p吗?,当p+1,我们会增加p+1个正数组,这是不行的,我们考虑的p的最大满足 k > = ( p + 1 ) ∗ p 2 k>=\frac{(p+1) * p}{2} k>=2(p+1)∗p的p,也就是说缺少的正数组个数是在 [ 1 , p ] [1,p] [1,p]

我们可以选择前面p个1中的一个将其变为1000, p + 1 p+1 p+1处的-1000遍为500,这样我们就可以添加 [ 1 , p ] [1,p] [1,p]个正数组,哪个位置的1变为1000呢?

我们可以找一下规律

弄清楚上面的事情,代码就很简单了,我们只需要而分出最后一个满足条件的p然后按照上面的构造方法放数即可

cpp 复制代码
#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back

using namespace std;

const int N=5e3+10,mod=100003,inf=(1ull<<63)-1;
int n,m,k;
int vis[N],d[N];
int a[1010],b[1010];



void solve()
{
	cin>>n>>k;
	int l=0,r=n;
	while(l<r){
		int mid=(l+r+1)>>1;
		if(mid*(mid+1)/2<=k)	l=mid;
		else	r=mid-1;
	}
	if(l*(l+1)/2==k){
		rep(i,1,l)	cout<<1<<' ';
		rep(i,l+1,n){
			if(i==l+1)	cout<<-500<<' ';
			else cout<<-1000<<' ';
		}
		cout<<endl;	
	}else{
		int d=k-(l*(l+1))/2;
		rep(i,1,l){
			if(i==d)	cout<<1000<<' ';
			else	cout<<1<<' ';
		}
		rep(i,l+1,n){
				if(i==l+1)	cout<<-500<<' ';
				else cout<<-1000<<' ';
			}	
		cout<<endl;	
	}
}

signed main(){
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//   	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}
相关推荐
码农水水8 分钟前
SpringBoot配置优化:Tomcat+数据库+缓存+日志全场景教程
java·数据库·spring boot·后端·算法·tomcat·哈希算法
毕设源码-朱学姐8 分钟前
【开题答辩全过程】以 基于ssm的电影推荐与分享平台的设计与实现为例,包含答辩的问题和答案
java
独自破碎E12 分钟前
LCR004-只出现一次的数字II
java·开发语言
Elias不吃糖16 分钟前
Spring Bean 注入与容器管理:从“怎么交给容器”到“怎么被注入使用”的完整总结
java·spring·rpc·bean
kpler23 分钟前
uboot移植第三方源码miniz
c语言·u-boot
Chan1623 分钟前
《Redis设计与实现》| 常用数据类型与AOF、RDB持久化
java·开发语言·redis·spring·面试·java-ee
wljt24 分钟前
游标分页原理
java·前端·数据库
SunnyDays101144 分钟前
如何使用 Java 自动调整 Excel 行高和列宽
java·自动调整行高和列宽·自适应行高和列宽
虎头金猫1 小时前
内网导航站 “出圈”!用 cpolar 解锁 Dashy 远程访问新玩法
java·c++·python·程序人生·职场和发展·php·程序员创富
康小庄1 小时前
SpringBoot 拦截器 (Interceptor) 与切面 (AOP):示例、作用、及适用场景
java·数据库·spring boot·后端·mysql·spring·spring cloud