【北邮鲁鹏老师计算机视觉课程笔记】02 filter

1 图像的类型

二进制图像:

灰度图像:

彩色图像:

2 任务:图像去噪

噪声点让我们看得难受是因为噪声点与周边像素差别很大

3 均值

滤波核= 卷积核

4 卷积操作

对应相乘再累加起来

卷积核记录了权值,把权值套到要卷积的目标图上,对应相乘

5 卷积的特性

线性和平移不变形

因为实际使用的时候卷积核是对称的,因此不要求翻转

真实运算的时候,对于没有像素的位置,要做填充,否则无法计算卷积,

最简单的办法,填充0。


填充是希望输入输出有固定的大小

6 卷积的应用

不变

左移

平滑降噪

锐化

7 振铃效应


离我近的点权值大、远的点权值小

8 高斯核

产生高斯卷积核的步骤:

①指定窗宽

②指定方差 σ \sigma σ

③归一化

9 高斯核参数

方差的影响:方差越大,自己的权值占比就越小,平滑的结果越强
方差固定,窗宽越大,归一化计算的分母就大,权值就小,平滑就更厉害

10 高斯核总结

滤除高频

一个大高斯核的卷积效果可以由两个小高斯卷积核连续操作得到

高斯核可以分解

分解性质有什么作用?

计算复杂度降低

11 噪声



高斯滤波对椒盐噪声效果并不好

12 中值滤波

把这些值从小到大排序,然后选取中值

中值滤波不改变整体形状

13 拉普拉斯高斯

相关推荐
赋创小助手2 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
白日做梦Q2 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
哥布林学者3 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (二) 图像风格转换
深度学习·ai
BOF_dcb4 小时前
【无标题】
pytorch·深度学习·机器学习
V1ncent_xuan4 小时前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉
Secede.5 小时前
Windows + WSL2 + Docker + CudaToolkit:深度学习环境配置
windows·深度学习·docker
江上鹤.1486 小时前
Day 50 CBAM 注意力机制
人工智能·深度学习
人工智能培训6 小时前
深度学习—卷积神经网络(1)
人工智能·深度学习·神经网络·机器学习·cnn·知识图谱·dnn
电商API_180079052477 小时前
深度解析以图搜索商品API:技术原理、接口设计与实践优化
人工智能·计算机视觉·目标跟踪
CoovallyAIHub7 小时前
纯视觉的终结?顶会趋势:不会联觉(多模态)的CV不是好AI
深度学习·算法·计算机视觉