【北邮鲁鹏老师计算机视觉课程笔记】02 filter

1 图像的类型

二进制图像:

灰度图像:

彩色图像:

2 任务:图像去噪

噪声点让我们看得难受是因为噪声点与周边像素差别很大

3 均值

滤波核= 卷积核

4 卷积操作

对应相乘再累加起来

卷积核记录了权值,把权值套到要卷积的目标图上,对应相乘

5 卷积的特性

线性和平移不变形

因为实际使用的时候卷积核是对称的,因此不要求翻转

真实运算的时候,对于没有像素的位置,要做填充,否则无法计算卷积,

最简单的办法,填充0。


填充是希望输入输出有固定的大小

6 卷积的应用

不变

左移

平滑降噪

锐化

7 振铃效应


离我近的点权值大、远的点权值小

8 高斯核

产生高斯卷积核的步骤:

①指定窗宽

②指定方差 σ \sigma σ

③归一化

9 高斯核参数

方差的影响:方差越大,自己的权值占比就越小,平滑的结果越强
方差固定,窗宽越大,归一化计算的分母就大,权值就小,平滑就更厉害

10 高斯核总结

滤除高频

一个大高斯核的卷积效果可以由两个小高斯卷积核连续操作得到

高斯核可以分解

分解性质有什么作用?

计算复杂度降低

11 噪声



高斯滤波对椒盐噪声效果并不好

12 中值滤波

把这些值从小到大排序,然后选取中值

中值滤波不改变整体形状

13 拉普拉斯高斯

相关推荐
csdn_life186 小时前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间6 小时前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
Sunhen_Qiletian7 小时前
深度学习之模型的部署、web框架 服务端及客户端案例
人工智能·深度学习
LaughingZhu8 小时前
Product Hunt 每日热榜 | 2026-02-15
人工智能·经验分享·深度学习·神经网络·产品运营
cyforkk9 小时前
YAML 配置文件中的常见陷阱:内联字典与块映射混用
人工智能·深度学习·机器学习
Testopia9 小时前
人脸检测:OpenVINO在计算机视觉中的应用
人工智能·计算机视觉·openvino
Katecat9966310 小时前
基于YOLO11-EfficientViT的辉长岩及其相关岩石类型计算机视觉识别分类系统_1
人工智能·计算机视觉·分类
月光有害10 小时前
深入解析批归一化 (Batch Normalization): 稳定并加速深度学习的基石
开发语言·深度学习·batch
Suryxin.10 小时前
从0开始复现nano-vllm「llm_engine.py」
人工智能·python·深度学习·ai·vllm
Testopia11 小时前
车道线检测:传统计算机视觉在自动驾驶中的应用
人工智能·计算机视觉·自动驾驶