【PyTorch】PyTorch中张量(Tensor)计算操作

PyTorch深度学习总结

第五章 PyTorch中张量(Tensor)计算操作


文章目录


前言

上文介绍了PyTorch中张量(Tensor)拆分拼接操作,本文将介绍张量计算操作。


一、张量比较大小

函数 描述
torch.allclose() 比较两个元素是否接近
torch.eq() 逐元素比较是否相等
torch.equal() 判断两个张量是否具有相同的形状和元素
torch.ge() 逐元素比较大于等于
torch.gt() 逐元素比较大于
torch.le() 逐元素比较小于等于
torch.lt() 逐元素比较小于
torch.ne() 逐元素比较不等于
torch.isnan() 判断是否为缺失值

1、torch.allclose()

函数用法:
torch.allclose(A, B, rtol=,atol=)

判断是否接近的公式如下:
∣ A − B ∣ ≤ a t o l + r t o l × ∣ B ∣   . |A-B| \leq atol+rtol\times|B|\,. ∣A−B∣≤atol+rtol×∣B∣.

python 复制代码
# 引入库
import torch

# 创建张量A
A = torch.tensor([10.0, 10.0])

# 测试函数
print(torch.allclose(A, A, rtol=0.1, atol=0.01,equal_nan=False))

输出结果为:False


2、torch.eq()和torch.equal()

①函数用法:
torch.eq(A, B)

主要比较元素之间的关系,即两个对应元素是否相等

python 复制代码
# 测试函数
print(torch.eq(A, A))

输出结果为:tensor([True, True])


②函数用法:
torch.equal(A, B)

主要比较张量之间的关系,即两个张量形状和大小是否相等

python 复制代码
# 测试函数
print(torch.equal(A, A))

输出结果为:True


3、ge、gt、le、lt、ne函数

函数用法:
torch.ge(A, B)

主要用于逐元素比较,看是否大于等于( ≥ \geq ≥)。

注:以上几个函数除本身意义不同外,其他用法几乎相同;故本文只针对torch.ge()进行展示。

python 复制代码
# 生成张量
B = torch.tensor([11.0, 9.0])

# 测试函数
print(torch.ge(A, B))

输出结果为:tensor([False, True])


4、torch.isnan()

函数用法:
torch.isnan(A)

判断张量A对应元素是否为缺失值

python 复制代码
print(torch.isnan(A))
print(torch.isnan(torch.tensor([0, 1, float("nan")])))

输出结果:

tensor([False, False])

tensor([False, False, True])


二、基本运算

1、四则运算(加减乘除)

生成试验数组:

python 复制代码
# 引入库
import torch

# 生成张量
A = torch.arange(6).reshape(2,3)
B = torch.linspace(1, 6, steps=6).reshape(2,3) # 在1-6之间生成5个等步长的元素组成张量
print(A, B)

输出结果为:

tensor([[0, 1, 2], [3, 4, 5]])

tensor([[1., 2., 3.], [4., 5., 6.]])

加减乘除运算为:+-*/

整除://

幂运算为:torch.pow()**

示例:

python 复制代码
print(A+B)
print(A-B)
print(A*B)
print(A/B)
print(B//A)
print(A**2)
print(torch.pow(A, 2))

输出结果为:

tensor([[ 1., 3., 5.], [ 7., 9., 11.]])

tensor([[-1., -1., -1.], [-1., -1., -1.]])

tensor([[ 0., 2., 6.], [12., 20., 30.]])

tensor([[0.0000, 0.5000, 0.6667], [0.7500, 0.8000, 0.8333]])

tensor([[inf, 2., 1.], [1., 1., 1.]])

tensor([[ 0, 1, 4], [ 9, 16, 25]])

tensor([[ 0, 1, 4], [ 9, 16, 25]])

2、其他计算

函数 描述
torch.exp() 张量的指数函数
torch.log() 张量的对数函数
torch.sqrt() 张量的平方根
torch.clamp_max() 根据最大值裁剪
torch.clamp_min() 根据最小值裁剪
torch.clamp() 根据范围裁剪
torch.t() 计算矩阵的转置
torch.matmul() 计算矩阵的转置
torch.inverse() 计算矩阵的逆矩阵
torch.trace() 计算矩阵的迹
相关推荐
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
智航GIS6 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
没学上了6 小时前
CNNMNIST
人工智能·深度学习
jarreyer6 小时前
摄像头相关记录
python
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人