ubuntu22.04@laptop OpenCV Get Started: 009_image_thresholding

ubuntu22.04@laptop OpenCV Get Started: 009_image_thresholding

  • [1. 源由](#1. 源由)
  • [2. image_thresholding应用Demo](#2. image_thresholding应用Demo)
    • [2.1 C++应用Demo](#2.1 C++应用Demo)
    • [2.2 Python应用Demo](#2.2 Python应用Demo)
  • [3. 重点分析](#3. 重点分析)
    • [3.1 Binary Thresholding ( THRESH_BINARY )](#3.1 Binary Thresholding ( THRESH_BINARY ))
    • [3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV )](#3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV ))
    • [3.3 Truncate Thresholding ( THRESH_TRUNC )](#3.3 Truncate Thresholding ( THRESH_TRUNC ))
    • [3.4 Threshold to Zero ( THRESH_TOZERO )](#3.4 Threshold to Zero ( THRESH_TOZERO ))
    • [3.5 Inverted Threshold to Zero ( THRESH_TOZERO_INV )](#3.5 Inverted Threshold to Zero ( THRESH_TOZERO_INV ))
  • [4. 总结](#4. 总结)
  • [5. 参考资料](#5. 参考资料)
  • [6. 补充](#6. 补充)

1. 源由

阈值过滤也是OpenCV图像最基本的操作之一。

其主要方法就是:

  1. 通过一个阈值(阈值)来判断数据的有效性
  2. 通过加强对比度来让肉眼更易识别图像

比如:一张灰度图上,当灰度相近似的时候,肉眼其实很难判断出来。但是通过阈值判断和加强,就可以非常容易的让肉眼轻易识别图形。

2. image_thresholding应用Demo

009_image_thresholding是OpenCV通过阈值对图像过滤的示例程序。

2.1 C++应用Demo

C++应用Demo工程结构:

009_image_thresholding/CPP$ tree .
.
├── CMakeLists.txt
├── image_threshold.cpp
└── threshold.png

0 directories, 3 files

确认OpenCV安装路径:

$ find /home/daniel/ -name "OpenCVConfig.cmake"
/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/
/home/daniel/OpenCV/opencv/build/OpenCVConfig.cmake
/home/daniel/OpenCV/opencv/build/unix-install/OpenCVConfig.cmake


$ export OpenCV_DIR=/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/

C++应用Demo工程编译执行:

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build . --config Release
$ cd ..
$ ./build/image_threshold

2.2 Python应用Demo

Python应用Demo工程结构:

009_image_thresholding/Python$ tree .
.
├── image_threshold.py
├── requirements.txt
└── threshold.png

0 directories, 3 files

Python应用Demo工程执行:

$ workoncv-4.9.0
$ python image_threshold.py

3. 重点分析

3.1 Binary Thresholding ( THRESH_BINARY )

过滤规则:阈值两端极化操作

# Binary Threshold
if src(x,y) > thresh
  dst(x,y) = maxValue
else
  dst(x,y) = 0

C++:

// Thresholding with threshold value set 127 
threshold(src,dst,127,255, THRESH_BINARY); 

Python:

# Thresholding with threshold value set 127 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_BINARY) 

3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV )

过滤规则:阈值两端反向极化操作

# Inverse Binary Threshold
if src(x,y) > thresh
  dst(x,y) = 0
else
  dst(x,y) = maxValue

C++:

// Thresholding using THRESH_BINARY_INV 
threshold(src,dst,127,255, THRESH_BINARY_INV); 

Python:

# Thresholding using THRESH_BINARY_INV 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_BINARY_INV) 

3.3 Truncate Thresholding ( THRESH_TRUNC )

过滤规则:超过阈值截断操作

# Truncate Threshold
if src(x,y) > thresh
  dst(x,y) = thresh
else
  dst(x,y) = src(x,y)

C++:

// Thresholding using THRESH_TRUNC 
threshold(src,dst,127,255, THRESH_TRUNC); 

Python:

# Thresholding using THRESH_TRUNC 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TRUNC) 

3.4 Threshold to Zero ( THRESH_TOZERO )

过滤规则:低于阈值归零

# Threshold to Zero
if src(x,y) > thresh
  dst(x,y) = src(x,y)
else
  dst(x,y) = 0

C++:

// Thresholding using THRESH_TOZERO 
threshold(src,dst,127,255, THRESH_TOZERO); 

Python:

# Thresholding using THRESH_TOZERO 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TOZERO) 

3.5 Inverted Threshold to Zero ( THRESH_TOZERO_INV )

过滤规则:超过阈值归零

# Inverted Threshold to Zero
if src(x,y) > thresh
  dst(x,y) = 0
else
  dst(x,y) = src(x,y)

C++:

// Thresholding using THRESH_TOZERO_INV 
threshold(src,dst,127,255, THRESH_TOZERO_INV); 

Python:

# Thresholding using THRESH_TOZERO_INV 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TOZERO_INV) 

4. 总结

前面《ubuntu22.04@laptop OpenCV Get Started: 008_image_filtering_using_convolution》对图像进行卷积的计算机操作,从而对数据进行有效性过滤。

本文通过对图像进行阈值的计算机操作,从而对数据进行有效性过滤,在特定的场景下,依然能够实现很好的图像数据分析作用。

  • src Source array (single-channel).
  • dst Destination array with the same size and type as src .
  • thresh Threshold value.
  • maxval Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.
  • type Threshold type. For details, see threshold . The THRESH_MASK, THRESH_OTSU and THRESH_TRIANGLE threshold types are not supported.

5. 参考资料

【1】ubuntu22.04@laptop OpenCV Get Started

【2】ubuntu22.04@laptop OpenCV安装

【3】ubuntu22.04@laptop OpenCV定制化安装

6. 补充

学习是一种过程,对于前面章节学习讨论过的,就不在文中重复了。

有兴趣了解更多的朋友,请从《ubuntu22.04@laptop OpenCV Get Started》开始,一个章节一个章节的了解,循序渐进。

相关推荐
打羽毛球吗️4 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁6 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
好喜欢吃红柚子21 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python25 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯35 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠37 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
plmm烟酒僧39 分钟前
Windows下QT调用MinGW编译的OpenCV
开发语言·windows·qt·opencv
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨1 小时前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测